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Staphylococcus epidermidis is a permanent member of the normal human microbiota,

commonly found on skin and mucous membranes. By adhering to tissue surface

moieties of the host via specific adhesins, S. epidermidis is capable of establishing

a lifelong commensal relationship with humans that begins early in life. In its role as

a commensal organism, S. epidermidis is thought to provide benefits to human host,

including out-competing more virulent pathogens. However, largely due to its capacity

to form biofilm on implanted foreign bodies, S. epidermidis has emerged as an important

opportunistic pathogen in patients receiving medical devices. S. epidermidis causes

approximately 20% of all orthopedic device-related infections (ODRIs), increasing up to

50% in late-developing infections. Despite this prevalence, it remains underrepresented in

the scientific literature, in particular lagging behind the study of the S. aureus. This review

aims to provide an overview of the interactions of S. epidermidis with the human host,

both as a commensal and as a pathogen. The mechanisms retained by S. epidermidis

that enable colonization of human skin as well as invasive infection, will be described,

with a particular focus upon biofilm formation. The host immune responses to these

infections are also described, including how S. epidermidis seems to trigger low levels

of pro-inflammatory cytokines and high levels of interleukin-10, which may contribute to

the sub-acute and persistent nature often associated with these infections. The adaptive

immune response to S. epidermidis remains poorly described, and represents an area

which may provide significant new discoveries in the coming years.

Keywords: Staphylococcus epidermidis, coagulase-negative staphylococci, commensal bacteria, device-related

infection, bone infection, biofilm, immune responses

INTRODUCTION

Staphylococcus epidermidis is a permanent member of the normal human microbiota, commonly
found on skin, and mucous membranes. By adhering to tissue surface moieties of the host via
specific adhesins, S. epidermidis is capable of establishing a lifelong commensal relationship with
humans that begins early in life. Although commensal S. epidermidis isolates display high rates
of resistance to antibiotics of clinical relevance (Morgenstern et al., 2016a), their default status
as commensal bacteria renders this phenomenon largely irrelevant for the healthy human host.
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However, with the advent of implanted medical devices such
as prosthetic joints and fracture fixation devices, S. epidermidis
has emerged as an important opportunistic pathogen (Otto,
2009; Widerstrom, 2016). In fact, the implanted medical
device may actually facilitate infection since any S. epidermidis
inadvertently introduced into the surgical site are capable of
rapidly adhering to, and accumulating upon, the surface of the
device. This surface-associated bacterial growth is known as
biofilm formation and appears to be the key factor enabling
invasive, device-related infection (DRI) for an otherwise largely
non-pathogenic microorganism. The ubiquitous presence of
S. epidermidis on human skin has enabled S. epidermidis infection
to emerge as a significant complication when using medical
devices (Rogers et al., 2009; Montanaro et al., 2011; Hogan et al.,
2015). With the increasing use of such devices, coupled with high
antibiotic resistance rates, S. epidermidis DRI will likely remain a
clinical problem for generations to come.

This review describes host interactions with S. epidermidis
under both healthy commensal conditions, and under conditions
of an invasive DRI. This includes describing how this
microorganism has adapted to life on human skin, including
biofilm formation, and how the same adaptations have enabled
invasive DRI. Particular attention will be paid to the impact
of S. epidermidis in orthopedic device-related infection (ODRI)
since these infections are amongst the most burdensome and
expensive to treat (Darouiche, 2004). Finally, since the impact
of ODRI on bone tissue is a critical feature of these infections,
interactions between S. epidermidis and bone will also be
described.

S. epidermidis AS A MEMBER OF
COMMENSAL HUMAN MICROBIOTA

Under healthy conditions, the skin commensal microbiota
is believed to be beneficial to humans through aiding in
nutrition, outcompeting pathogens and educating the immune
system (Brown and Clarke, 2017). Humans are believed to
first encounter S. epidermidis in utero, as evidenced by their
presence in amniotic fluid (Collado et al., 2016). The first feces
(meconium) has also been shown to harbor a predominance
of S. epidermidis (Jimenez et al., 2008) and the skin of the

Abbreviations: Aae, Autolysin/adhesion from S. epidermidis; Aap, Accumulation

associated protein; AMPs, Antimicrobial peptides; APC, Antigen-presenting cell;

AtlE, Autolysin; Bhp, Biofilm associated homolog protein; CoNS, Coagulase-

negative staphylococcus; CWA, Cell-wall-anchored; DC, Dendritic cells; DRI,

Device-related infection; ECM, Extracellular matrix; eDNA, Extracellular DNA;

Embp, Extracellular matrix-binding protein; EPS, Extracellular polymeric

substances; FPR2, Formyl peptide receptor 2; IFN, Interferon; IL, Interleukin;

KO, Knock-out; LTA, Lipoteichoic acid; moDC, Monocyte-derived dendritic

cells; MRSE, Methicillin resistant S. epidermidis; MSCRAMMs, Microbial

surface components recognizing adhesive matrix molecules; ODRIs, Orthopedic

device-related infections; PDG, Peptidoglycan; PIA, Polysaccharide intercellular

adhesin; PGA, Poly-γ-glutamic acid; PSMs, Phenol-soluble modulins; RANKL,

Receptor activator of NFκB ligand; ROS, Reactive oxygen species; Sdr, Serine-

aspartate repeat protein; SCCmec, Staphylococcal cassette chromosome mec; Ses,

S. epidermidis surface protein; SCV, Small colony variant; SSP, Staphylococcal

surface protein; TNF-α, Tumor necrosis factor alpha; Th, T helper; TLR, Toll-like

receptor; WTA, Wall teichoic acids.

newborn will be colonized by S. epidermidis within a few
days (Dominguez-Bello et al., 2010). Thereafter, S. epidermidis
becomes part of the “normal” resident human skin microbiota,
being predominant in moist sites such as nares or fossae, but also
present in sebaceous areas such as the facial skin (Grice et al.,
2009) and mucosal tissues such as the gastrointestinal and the
lower reproductive tracts (Sharon et al., 2013; Majchrzak et al.,
2016).

In order to persist on human skin, S. epidermidis has
evolved diverse mechanisms to sense and overcome the physical
and chemical features of host antimicrobial defense. Such
mechanisms include surface adhesins enabling attachment to the
host (Coates et al., 2014), systems to sense host antimicrobial
peptides (AMPs) and communicationmolecules (e.g., hormones)
(Li et al., 2007; N’Diaye et al., 2016), mechanisms against AMPs
(Joo and Otto, 2015) (e.g., S. epidermidis derived protease SepA
is induced by and directed against the human AMP dermicidin;
Lai et al., 2007), and survival strategies against desiccation and
osmotic stress (Hirai, 1991; Amin et al., 1995).

S. epidermidis has also been shown to influence host
colonization by other species, as shown for Staphylococcus aureus
(Iwase et al., 2010; Park et al., 2011). Negative correlations
between these two species have been reported in humans,
insinuating an antagonism between at least some strains (Frank
et al., 2010; Sullivan et al., 2016). This effect is at least partially
due to the secretion of factors that impact on the viability
or colonization capacity of other microorganisms (Christensen
et al., 2016; Janek et al., 2016). Phenol soluble modulins
(PSMs) are a family of multifunctional amphipathic, alpha-
helical peptides that are produced by S. epidermidis isolates (Otto,
2014). They are believed to act upon host cells, are important
for biofilm maturation (Wang et al., 2011) and could play a
role in the competition between microorganisms on human skin.
In particular, PSM-γ and PSM-δ produced by S. epidermidis
have been shown to selectively reduce survival of Streptococcus
pyogenes on mouse skin, but did not affect S. epidermidis itself
(Cogen et al., 2010a,b). Both PSM-γ and PSM-δ cause membrane
leakage in target bacteria (S. aureus and S. pyogens) (Cogen
et al., 2010b), which indicates that they function like host-derived
AMPs, with whom they share structural similarities. Host-
derived AMPs and S. epidermidis PSMs have even been shown
to act synergistically against bacterial pathogens (Cogen et al.,
2010a). In contrast, the closely related δ-toxin of S. aureus only
seems to possess a very limited antimicrobial activity (Dhople
and Nagaraj, 1993, 2005) suggesting that the cooperative effect
with host AMPs is not a widespread phenomenon. In addition,
many strains of S. epidermidis also produce bacteriocins, which
are antimicrobial peptides that act against other species or
strains (often closely related to the producing bacteria). Gram-
positive bacteria usually produce two types of bacteriocins:
lanthionine-containing antibacterial peptides (lantibiotics) and
class-II bacteriocins (Bastos et al., 2009; Hassan et al., 2012).
For S. epidermidis, examples include the lantibiotics epidermin
(Allgaier et al., 1986), Pep5, epilancin K7 (van de Kamp et al.,
1995), and epilancin 15X (Ekkelenkamp et al., 2005), with
further examples recently described (Sandiford and Upton,
2012; Bennallack et al., 2014; Janek et al., 2016). Another
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mechanism employed by S. epidermidis to compete with other
skin microorganisms involves the degradation of biofilms from
other bacterial species. The serine protease Esp is able to mediate
S. aureus biofilm degradation by targeting several proteins
involved in biofilm assembly (Iwase et al., 2010; Sugimoto et al.,
2013). It has been observed that the presence of Esp-secreting
S. epidermidis in the nose correlates with the absence of S. aureus
in healthy human volunteers (Iwase et al., 2010). This activity
has been supported experimentally with the finding that the
intranasal application of an Esp-secreting strain was able to
decrease S. aureus colonization in mice and humans (Iwase et al.,
2010; Park et al., 2011). Finally, metabolic products may also
serve to counteract other microorganisms. S. epidermidis has
been shown to ferment glycerol into short chain fatty acids, which
have displayed inhibitory activity against Propionibacterium
acnes (implicated in acne vulgaris) in vitro and in mice (Wang
et al., 2014).

S. epidermidis AS A PATHOGEN

In contrast to its standard role as a commensal microorganism,
S. epidermidis and other coagulase negative Staphylococci
(CoNS) have been found to cause invasive infections in selected
groups of patients. These higher risk groups include preterm
neonates, immunocompromised individuals and patients with
indwelling medical devices (Darouiche, 2004; Bjorkqvist et al.,
2010; Dong and Speer, 2014). Unlike S. aureus, which typically
produces numerous extracellular enzymes and toxins that enable
invasive infections in otherwise healthy hosts, S. epidermidis
seems to retain a limited number of virulence factors (Gill et al.,
2005) and normally is unable to cause invasive infection in
healthy hosts (Heilmann and Gotz, 2013).

S. epidermidis as a Pathogen of the
Musculoskeletal System
S. epidermidis is second only to S. aureus as the most prevalent
species encountered in ODRIs (Trampuz and Zimmerli, 2005,
2006). S. epidermidis causes approximately 20–30% of ODRIs
(Trampuz and Zimmerli, 2006; Montanaro et al., 2011; Moriarty
et al., 2016) and the prevalence may even increase to 50%
in late-developing infections (Schafer et al., 2008). These late-
developing infections may be linked to the sub-acute nature of
S. epidermidis infections, which may present many months after
surgery with subtle signs of infection. This differs from the acute
and often obvious nature of S. aureus infections and may be
partially explained by the lack of virulence factors retained by
S. epidermidis in comparison with S. aureus (Melzer et al., 2003;
Zimmerli et al., 2004; Shurland et al., 2007).

The diagnosis of ODRI is based on the combination of
clinical presentation, biopsy culture, histological analysis and
clinical diagnostic criteria, such as high C-reactive protein
(Metsemakers et al., 2016). Diagnosis may be particularly
challenging for sub-acute infections due to the lack of obvious
clinical signs of infection. Therefore, microbiological culture
results are often the most critical diagnostic criteria. Since the
microbes grow in biofilms on the foreign material and in necrotic

bone tissue, cultivation and identification of the disease-causing
pathogens may require the culture of several intraoperative tissue
samples and removal of the implant for appropriate sampling
(Costerton et al., 2011; Xu et al., 2017). To increase the yield
of positive cultures, it is advised to terminate antibiotic therapy
before sampling, acquire at least three tissue biopsies, and to
perform sonication of removed hardware to remove biofilm-
associated bacteria from the surface (Trampuz and Zimmerli,
2006; Trampuz et al., 2007; Puig-Verdie et al., 2013; Yano
et al., 2014; Dapunt et al., 2015; Metsemakers et al., 2016).
In suspected S. epidermidis infections, where the pathogen is
also a skin commensal that could contaminate the biopsy if
aseptic techniques are not followed, the same indistinguishable
microorganism must be cultured from at least two separate
biopsies in order to differentiate a relevant infection from skin
contamination. In contrast, in virulent species such as S. aureus
or Escherichia coli, a single positive biopsy may be sufficient to
determine the presence of an infection (Patzakis and Zalavras,
2005; Osmon et al., 2013).

The treatment of S. epidermidisODRI will depend on patient-
specific factors, but will possibly require implant removal and a
minimum of 6 weeks antibiotic therapy (Trampuz and Zimmerli,
2005, 2006; Moriarty et al., 2016). Despite such prolonged and
comprehensive therapy, infection recurs in approximately one
third of the cases and up to one fifth of cases cannot achieve a cure
with restoration of limb function (Salgado et al., 2007; Teterycz
et al., 2010; Morgenstern et al., 2016b,c). Morgenstern et al.
investigated the clinical course and outcome of staphylococcal
ODRIs in elderly patients and could show that S. epidermidis
was associated with prolonged infections and was associated
with lower cure rates (75%) than S. aureus (84%), although
S. aureus related infections were associated with a five-fold higher
mortality rate (Morgenstern et al., 2016b). This data therefore
supports clinical beliefs that S. epidermidis is an agent of sub-
acute infection with significantly worse treatment outcomes,
although those infections may be less life-threatening than
S. aureus infections.

S. epidermidis Virulence Factors
Adhesion to Host Proteins
As a commensal microorganism, S. epidermidis retains the ability
to specifically adhere to host proteins in the skin. In a surgical
wound, the bacterium utilizes these adhesion mechanisms in
order to adhere to the deeper tissues and to the implanted
device, or more specifically, the conditioning layer of host
proteins deposited upon the device. Initial adhesion of bacteria
to implant surfaces is mediated by non-specific interactions such
as hydrophobic interactions (Gristina, 1987), and then as shown
schematically in Figure 1, by specific adhesins such as autolysin
(AtlE) (Heilmann et al., 1997), extracellular DNA (eDNA) (Qin
et al., 2007; Izano et al., 2008), and staphylococcal surface protein
1 and 2 (SSP-1, SSP-2) (Veenstra et al., 1996). AtlE, SSP-1,
and SSP-2 have been primarily associated with adhesion to
native surfaces (Veenstra et al., 1996; Heilmann et al., 1997),
whilst eDNA is generated in S. epidermidis through an AtlE-
mediated lysis of a subpopulation of the bacteria, promoting
biofilm formation within the remaining population (Qin et al.,
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FIGURE 1 | Biofilm formation scheme with scanning electron micrographs of S. epidermidis single cells (lower left) or in biofilm community surrounded by EPS (lower

right) on a titanium surface. Image adapted with permission from Moriarty et al. (2011).

2007). In the context of medical devices, the surface of the device
becomes coated with host-derived plasma proteins, extracellular
matrix (ECM) proteins and coagulation products (platelets and
thrombin) immediately following implantation (Baier et al.,
1984). Cell-wall-anchored (CWA) proteins/adhesins, such as
the microbial surface components recognizing adhesive matrix
molecules (MSCRAMMs) (Foster and Hook, 1998) bind bacteria
like S. epidermidis directly to these molecules (Figure 2). In
S. epidermidis, adhesins for fibrinogen [as serine-aspartate repeat
protein G (SdrG/Fbe) (Hartford et al., 2001; Brennan et al.,
2009)], fibronectin [extracellular matrix-binding protein (Embp)
(Arciola et al., 2003)], collagen [SdrF/GehD (Bowden et al., 2002;
Arrecubieta et al., 2007)], vitronectin [AtlE or autolysin/adhesin
(Aae) (Heilmann et al., 2003)] and elastin [elastin-binding
protein (EbpS)] have all been identified. Peptidoglycan-bound
wall teichoic acids (WTA) are an essential part of the
S. epidermidis cell wall and also play an important role in bacterial
adhesion. WTA enhances the initial adhesion of S. epidermidis
to medical devices by binding to adsorbed fibronectin (Hussain
et al., 2001) and fibrin clots (Chugh et al., 1990).

Biofilm Formation
The ability to adhere to a surface represents the first step
in biofilm formation, commonly believed to be the most
important virulence factor possessed by S. epidermidis (Figure 1).
Biofilm development facilitates resistance against host defense
mechanisms (Myrvik et al., 1989; Kristian et al., 2008; Cerca et al.,
2011; Schommer et al., 2011) and confers antibiotic resistance
(Cerca et al., 2006; Mack et al., 2006). Biofilm formation also
complicates medical and surgical treatment protocols because
implant removal is often required to remove the biofilm.

Biofilms are defined as complex communities of adherent
bacteria encased in a matrix of self-produced extracellular

polymeric substances (EPS) (Costerton et al., 1995) (Figure 1).
The accumulation and maturation of the S. epidermidis
biofilm occurs via a number of mechanisms. Polysaccharide
intercellular adhesin [PIA, or poly-N-acetyl-glucosamine
(PNAG)], synthesized by icaADBC encoded proteins (Heilmann
et al., 1996; Mack et al., 1996a) is responsible for biofilm
formation in the majority of S. epidermidis isolates (Mack
et al., 1996b) and was believed to be the most common
molecule associated with biofilm formation (Heilmann et al.,
1996; Mack et al., 1996a; Figure 2). This was endorsed by the
observation that the ica operon was absent in most commensal
S. epidermidis strains (Zhang et al., 2003; Chokr et al., 2007).
However, not all S. epidermidis have the icaADBC genes
(Heilmann et al., 1996; Harris et al., 2016) and these isolates
mediate biofilm formation by proteinaceous factors, such
as the accumulation associated protein (Aap) (Rohde et al.,
2005) that contributes to biofilm formation upon cleavage by
extracellular or host proteases (Figure 2). The aap gene has
been observed in both pathogenic and commensal isolates,
more frequently than the ica operon (Gill et al., 2005; Los et al.,
2010; Harris et al., 2016). Other PIA-independent mechanisms
include biofilm associated homolog protein (Bhp) (Bowden
et al., 2005; Tormo et al., 2005), Embp (Williams et al., 2002;
Christner et al., 2010), and S. epidermidis surface protein
(Ses)C (Shahrooei et al., 2009), and SesE (Harris et al., 2016).
Interestingly, Rohde et al. suggested that PIA-dependent biofilms
are more robust than those formed by proteinaceous factors
(Rohde et al., 2007), and another study found they result in
a different morphotype or biofilm substructure (Harris et al.,
2016). WTA have also been linked with S. epidermidis biofilm
formation. TagO encodes the first enzymatic step in WTA
biosynthesis and a tagO mutant has been shown to have a
biofilm negative phenotype. This is partly attributed to an
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FIGURE 2 | Scheme of the main S. epidermidis pathogenic mechanisms, which include adhesion molecules and biofilm formation. The most well described adhesins

involved in adhesion to native surfaces or protein-coated surfaces are shown in the upper part (molecules also involved in biofilm formation shown in purple). The main

described biofilm components are shown at the bottom of the figure (PIA, cleaved Aap, eDNA, WTA, and Empb). The figure also presents some of the most important

regulators of biofilm and adhesion molecules (black arrows: activation/positive signaling, red lines: inhibition/negative signaling). See text for further details.

increase in cell surface hydrophobicity, impairing its initial
adhesion to the surface, and a decreased production of PIA
by activating the icaADBC repressor, icaR (Holland et al.,
2011).

Both CWA proteins and biofilm formation mechanisms are
regulated by several global regulators, such as the accessory gene
regulator (agr), staphylococcal accessory homologous sar genes,
sigma factor B (σB), and luxS (Vuong et al., 2003; Knobloch et al.,
2004; Xu et al., 2006; Christner et al., 2012). Further information
on regulation of biofilm in S. epidermidis can be obtained in other
review articles (Kong et al., 2006; Mack et al., 2007; Le and Otto,
2015; Paharik and Horswill, 2016).

As already mentioned, biofilms play a role in immune evasion,
primarily by providing a barrier to immune cells. PIA may
contribute to innate immune system evasion by promoting
generation of complement C5a fragment (Satorius et al., 2013;
Al-Ishaq et al., 2015), inhibiting phagocytes and neutrophil

killing (Vuong et al., 2004b,c), and reducing the activity of
AMPs (Vuong et al., 2004b; Otto, 2006). Recently, other studies
have reported slightly opposite findings, with PIA-producing
bacteria inducing greater inflammatory responses and enhanced
phagocytosis (Spiliopoulou et al., 2012; Ferreirinha et al., 2016),
although Spiliopoulou et al. did observe reduced killing in PIA-
producing strains as discussed elsewhere recently (Nguyen et al.,
2017). S. epidermidis also produces a second exopolymer, the
poly-γ-glutamic acid (PGA), although at comparatively lower
levels. Synthesized by the gene products of the cap locus,
PGA is important in mediating S. epidermidis resistance to
neutrophil phagocytosis and AMPs, and promoting growth at
high salt concentrations (PGA is induced under such conditions)
(Kocianova et al., 2005).

It has yet to be elucidated if WTA has a direct role in
S. epidermidis immune system evasion. However, like S. aureus,
S. epidermidis contains the genes for D-alanylation of WTA, a
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modification known to protect the bacteria from the activity of
AMPs (Peschel et al., 1999).

Antibiotic Resistance
Although the majority of S. epidermidis strains remain
susceptible to the newer antibiotics such as daptomycin,
tigecycline, linezolid and dalbavancin (Hellmark et al.,
2009; Pinheiro et al., 2016), high endemic antimicrobial
resistance within this species represents a significant
challenge in the treatment of S. epidermidis infections,
especially DRI (Diekema et al., 2001). Methicillin resistance
in S. epidermidis (MRSE) is an important characteristic of
infecting isolates as it is often associated with additional
antibiotic resistance mechanisms. Resistance to other antibiotics,
such as erythromycin (encoded by erm genes), ciprofloxacin,
clindamycin, aminoglycosides (encoded in aacA/aphD gene)
or trimethoprim-sulfamethoxazole, are also often observed,
especially in MRSE (Cherifi et al., 2013). Methicillin resistance
is encoded by mecA, an alternative penicillin binding protein
with decreased affinity to β-lactam based antibiotics such as
penicillin, methicillin and oxacillin (Chambers et al., 1985). It is
carried on the mobile genetic element, staphylococcal cassette
chromosome mec (SCCmec), of which several types have been
identified for S. epidermidis (Miragaia et al., 2005). MRSE have
been found to be common in infection-causing isolates (70–87%
of all S. epidermidis isolates) (Cherifi et al., 2013; Farina et al.,
2016; Morgenstern et al., 2016c; Salgueiro et al., 2017), and even
higher (90%) in specific patient cohorts (Morgenstern et al.,
2016b). MRSE prevalence in healthy individuals is low (3–18%
of S. epidermidis commensal isolates) (Rolo et al., 2012; Cherifi
et al., 2013; Farina et al., 2016), although prevalence is increased
for individuals exposed to the healthcare system, as observed in
hospitalized patients or in healthcare workers (Rohde et al., 2004;
Morgenstern et al., 2016a; Widerstrom et al., 2016). The specific
causes of the increased prevalence of resistant isolates in the
hospital environment is unknown, although is likely associated
with high antibiotic exposure and direct or indirect interpersonal
transmission.

It remains unclear whether infection with resistant organisms
results in a worse clinical outcome in comparison with
susceptible counterparts. In a recent study of patients
with S. epidermidis ODRIs, methicillin resistance status
did not influence the clinical course and outcome of
treatment (Morgenstern et al., 2016c), although further
studies are required to confirm this finding. In any case,
clear therapeutic guidelines are available for the treatment
of both MRSE and MSSE, with a high likelihood of
treatment success in both cases when guidelines are followed
closely.

Phenol Soluble Modulins
Until relatively recently it was thought that S. epidermidis did not
produce toxins. However, the identification and characterization
of the PSMs have now changed that concept (Mehlin et al., 1999).
The PSMs are a family of genome-encoded peptides, and like
the CWA proteins/adhesins, are under the strict regulation of
the agr quorum sensing system (Figure 2; Mehlin et al., 1999;

Vuong et al., 2004a; Yao et al., 2005). In S. epidermidis, the PSM
family consists of PSM-α, PSM-β1, PSM-β2, PSM-δ, PSM-ε, and
PSM-γ/δ-toxin (Mehlin et al., 1999; Vuong et al., 2004a; Yao
et al., 2005). PSMβ peptides are the primary PSMs produced
by S. epidermidis, are expressed at high levels during biofilm
formation, and have been shown to have a role in the structuring
and dispersal of the biofilm (Yao et al., 2005; Wang et al., 2011).
They are specifically associated with the formation of channels
observed between the biofilm layers, which are considered
important for nutrient uptake (Wang et al., 2011). S. epidermidis-
derived PSMδ is strongly cytolytic against neutrophils, similar to
S. aureus. However, S. epidermidis culture filtrates were observed
to have a very low cytolytic potential in vitro (Cheung et al., 2010).
As growing conditions are likely to have an influence on PSM
production, the role of S. epidermidis PSMδ in vivo needs to be
further addressed.

Finally, certain S. epidermidis strains have been shown to
produce PSM-mec, a PSM encoded in the mobile genetic
element SCCmec, in contrast to the other PSMs that are
chromosomal encoded (Qin et al., 2016). PSM-mec has cytolytic
potential against neutrophils in vitro and its presence has
been associated with decreased bacterial clearance and higher
mortality rates in a murine model of sepsis (Qin et al.,
2017).

Other Pathogenic Mechanisms
Small colony variants (SCVs), a colony phenotype characterized
by small size, slow growth and downregulation of virulence genes,
are recognized as a pathogenic mechanism for several bacterial
species, including S. epidermidis, and are often associated with
chronic infections (Johns et al., 2015). SCVs seem to be less
susceptible to antibiotics and to the immune system, potentially
by being able to survive intracellularly and inducing a more anti-
inflammatory environment due to increased secretion of IL-10
(Magrys et al., 2015). The topic has been extensively reviewed
recently (Kahl et al., 2016).

Finally, internalization and intracellular persistence in non-
professional phagocytes (e.g., osteoblasts) is a described evasion
mechanism for S. aureus (Mempel et al., 2002; Hamza and Li,
2014). A few internalization mechanisms have been described
for S. epidermidis, involving AtlE (Hirschhausen et al., 2010)
and SdrG (Claro et al., 2015). This represents a potentially
new pathogenic mechanism for S. epidermidis and a location
where bacteria could survive to cause persistent/relapsing
infections; however its relevance in vivo has not yet been
proven.

HOST INTERACTION WITH S. epidermidis

The interaction between S. epidermidis as a commensal with the
host immune system is thought to play a role in the development
of immunological tolerance. That is, to induce immune responses
in the host which control aberrant inflammatory responses to
non-pathogenic molecules such as those found in food but also
in commensal bacteria. This question was assessed in recent
murine studies with the topical application of S. epidermidis
(Naik et al., 2015; Scharschmidt et al., 2015) (S. epidermidis
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is typically not a major representative of the normal mouse
skin microbiota; Tavakkol et al., 2010). Scharschmidt et al.
reported that the application of S. epidermidis to the skin
within the first weeks of life established antigen-specific tolerance
to the bacteria, by generating CD4+ regulatory T (Treg)
cells, which homed into neonatal skin (Scharschmidt et al.,
2015). Mice that were not colonized during the neonatal
period presented with higher inflammation and neutrophil
recruitment compared to colonized mice, when challenged with
the same strain of S. epidermidis in a skin-abrasion model.
The use of the sphingosine-1-phosphate receptor antagonist
FTY720 during neonatal period, which blocked the egression
of Tregs into skin, suppressed the tolerogenic effect indicating
that there may exist a critical period when Treg mediated
tolerance can be acquired (Scharschmidt et al., 2015). On the
other hand, Naik et al. showed that S. epidermidis application
induced cutaneous interferon (IFN)-γ and interleukin (IL)-
17A producing T cells (Naik et al., 2015). In this case, IL-
17A+CD8+ T cells were shown to home to the mouse epidermis
specifically after S. epidermidis application, but not with other
tested species. This was mediated through the action of a skin-
resident dendritic cell subset and was not associated with the
induction of inflammation (Naik et al., 2015). More importantly,
when an epicutaneous infection model with Candida albicans
was used, the application of the fungus in mice pretreated
with topical S. epidermidis resulted in decreased C. albicans
CFU counts compared to not pretreated ones. The effect was
lost when either anti-CD8 or anti-IL-17A antibodies were co-
administered, which highlights the relevance of the adaptive
immune responses generated. Altogether, the study suggested
that resident bacteria in the skin (S. epidermidis) can modulate
the immune system, generating adaptive immune responses
which in turn may help in promoting protective innate immune
responses and controlling inflammation. The effect seemed to
be tissue-specific, since S. epidermidis failed to induce IL-17A-
producing cells when administered in the lung or gut. In two
other studies, S. epidermidis lipoteichoic acid (LTA) has been
shown to decrease skin inflammation (Lai et al., 2009), for
example by inducing regulatory microRNAs in a Pseudomonas
aeruginosa skin infection model (Xia et al., 2016). However, the
true nature of these observations needs to be clarified, as LTA
purity even from commercial preparations has been questioned
(Nguyen et al., 2017).

Overall, these experimental data reveal the capacity
of “commensal” S. epidermidis to specifically shape
cutaneous immunity (innate and adaptive responses) and
consequently decrease infection burden in the host. The
capacity of S. epidermidis to induce similar effects in
humans remains to be proven. Nevertheless, this idea can
be somewhat supported by in vitro findings, whereby human
monocytes, monocyte-derived dendritic cells (moDC) and
T lymphocytes stimulated with S. epidermidis displayed
an anti-inflammatory profile, with high production of
IL-10 (Laborel-Preneron et al., 2015). Further in vivo
and human microbiome studies may provide a deeper
understanding of the complex nature of this microorganism-host
interaction.

Innate Immune Response during Infection
Recognition
Innate immune responses are triggered by the detection
of microbial structures through pattern-recognition receptors
(PRRs) on immune and tissue cells. The most studied PRRs
are toll-like receptors (TLRs), which recognize a broad range
of bacterial derived macromolecules (Akira and Hemmi, 2003).
S. epidermidis triggers immune responses partly via TLR-2 (which
often forms heterodimers with TLR-1 and TLR-6; Fournier,
2012), similar to S. aureus (Yoshimura et al., 1999; Morath
et al., 2002). TLR-2 can recognize different bacterial cell wall
molecules including lipoproteins, LTA and peptidoglycan (PDG)
(Figure 3; Akira et al., 2006; Fournier, 2012), although some of
its ligands are still controversial (van Bergenhenegouwen et al.,
2013). Secreted components can also be recognized and activate
the immune system, as it was shown for S. epidermidis PSM,
which is recognized by TLR-2/TLR-6 heterodimers (Hajjar et al.,
2001).

Recognition of S. epidermidis via TLR-2 has been shown
in keratinocytes (Wanke et al., 2011; Ommori et al., 2013),
endothelial cells (Robertson et al., 2010), or human fibroblasts
(Hatakeyama et al., 2003), and has also been demonstrated
in TLR-2 transfected human embryonic kidney (HEK)293 cell
line (Strunk et al., 2010). Furthermore, in preclinical models of
S. epidermidis bacteremia or subcutaneous/soft tissue foreign-
body infection, an up-regulation of TLR-2 and the adaptor
molecule MyD88 has been observed upon infection (Kronforst
et al., 2012; Svensson et al., 2015, 2017). The use of TLR-2 knock-
out (KO) in bacteremia models with neonatal and adult mice
resulted in delayed clearance, especially at early time-points after
infection (Strunk et al., 2010; Bi et al., 2015; Cole et al., 2016).
These data suggest that TLR-2 is involved in the early responses
to S. epidermidis infections although is not essential for clearance
of the infection (Cole et al., 2016).

Responses toward S. epidermidis can also occur independently
of TLR-2, as it was shown in the models using TLR-2 KO
mice (Bi et al., 2015). Other PRRs that may potentially be
involved in S. epidermidis sensing are NOD-like receptors, as
they recognize S. epidermidis-derived PDG (Natsuka et al., 2008).
CD14, expressed mostly in monocytes and macrophages, is
a TLR-2 co-receptor which may contribute to S. epidermidis
recognition in some cell subsets (Hatakeyama et al., 2003). PSMs
produced by S. epidermidis can be sensed by formyl peptide
receptor 2 (FPR2/ALX) (Kretschmer et al., 2012, 2015), expressed
in neutrophils and involved in their recruitment to the infection
site (Rautenberg et al., 2011). To date, the contribution of these
receptors in vivo has not been addressed.

Induction of Antimicrobial Peptides (AMPs)
Human AMPs are a heterogeneous group of amphipathic
peptides, which may be subdivided depending on their structure
and function. AMPs functions include rapid, direct killing
of microbes and activation/modulation of immune responses,
such as cell recruitment or chemokine production. One of
the most effective early responses of the host to pathogenic
insults is mediated through human β-defensins (hBD). In vitro
experiments with keratinocytes or skin explants have shown that
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FIGURE 3 | Summary of S. epidermidis recognition and subsequent effector mechanisms. Recognition of S. epidermidis or its secreted proteins can occur via TLR-2

(in red), which forms heterodimers with TLR-1 and TLR-6 and can also associate with other non-TLR molecules (unspecified partner colored in blue). Other receptors

recognizing S. epidermidis include CD14 and FPR2/ALX. Upon recognition, downstream signaling and effector mechanisms are triggered, including secretion of

AMPs, phagocytosis by neutrophils and macrophages and secretion of cytokines and chemokines from numerous cell types, which will orchestrate additional innate

and adaptive immune responses.

S. epidermidis or its culture supernatants can elicit high levels
of hBD-2 and hBD-3 but not hBD-1 (Lai et al., 2010; Li et al.,
2013; Ommori et al., 2013; Percoco et al., 2013; Park et al., 2014),
and RNase7 and cathelicidin LL-37 in epithelial cells (Burgey
et al., 2016). This AMP inductionmay be beneficial under healthy
conditions to counteract more pathogenic species (Lai et al.,
2010; Li et al., 2013) but can be also expected to contribute
to defense in S. epidermidis superficial or ocular infections. Of
relevance, some of them (hBD-2, hBD-3, LL-37 and human alpha
defensin (HNP)-1) have been proven, to different extents, to
be effective against S. epidermidis in vitro (Turner et al., 1998;
Gordon et al., 2005; Huang et al., 2007; Dapunt et al., 2016b),

although no data is available from in vivo studies. Nevertheless,
the studies mentioned above showed some discrepancies in terms
of AMP killing capacity, which could be explained by differences
in strains used, as some of themmay possess mechanisms against
AMP. More relevant in the context of S. epidermidis DRI, other
cell types including neutrophils and monocytes can produce
AMPs. These AMPs will often be located in the phagolysosomes,
where they can contribute to bacteria killing. Of interest, hBD-3,
LL-37 and hepcidin 20, a liver-derived AMP, have been shown
to reduce S. epidermidis attachment and/or biofilm formation in
vitro (Hell et al., 2010; Zhu et al., 2013; Brancatisano et al., 2014).
The mechanisms of action is currently unknown, although for
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hBD-3 a decrease in icaA and icaD expression and increase of
icaR were associated with the observations (Zhu et al., 2013).

Phagocytosis/Killing by Neutrophils and

Macrophages
Phagocytosis by neutrophils is one of the most important
mechanisms for elimination of contaminating or infecting
bacteria. Neutrophils migrate to the site of infection, following
host signals (e.g., chemokines, AMPs) or sensing bacterial
components as mentioned above. At the infection site,
neutrophils will internalize opsonized bacteria forming a
phagosome and, finally, bacteria will be destroyed in the
phagolysosome by the action of reactive oxygen species
(ROS), proteases and AMPs. An additional mechanism to kill
bacteria has been described for neutrophils: the generation
of neutrophil extracellular traps (NETs) or NETosis. Nuclear
and mitochondrial DNA is released to the extracellular space
to form NETs, which contain high local concentrations of
intracellular antimicrobial proteins. Although literature is still
limited, S. epidermidis biofilms have been shown to induce DNA
release and NETosis in vitro (Meyle et al., 2012; Dapunt et al.,
2016a). Macrophages are also able to phagocytose and destroy
S. epidermidis (Riool et al., 2014) with similar mechanisms, and
further present antigens to T cells. Phagocytosis of S. epidermidis
by macrophages is enhanced following stimulation with IFN-γ
in vitro (Magrys et al., 2015) and in vivo (Boelens et al., 2000a).

Phagocytes will also act against biofilms. It has been shown
that neutrophils can bind to opsonized but also non-opsonized
biofilms, partly by recognizing EPS (Meyle et al., 2012).
Nevertheless, it is generally accepted that the biofilm mode of
growth will protect bacteria from phagocytosis, despite some
discrepancies in the literature that have been discussed elsewhere
(Nguyen et al., 2017). Furthermore, biofilm mode of growth,
most often studied in PIA-producing strains, has been shown
to decrease killing efficiency in macrophages and neutrophils
(Vuong et al., 2004c; Cerca et al., 2006; Kristian et al., 2008;
Spiliopoulou et al., 2012).

Interesting observations were made when comparing the
phagocytosis of S. epidermidis and S. aureus biofilms, with
the latter being more likely infiltrated and engulfed (Guenther
et al., 2009). However, although S. aureus was more likely
phagocytosed, this does not always correlate with the capacity
of neutrophils to kill the bacteria. In fact S. aureus has
several mechanisms to avoid lysis by neutrophils and to persist
intracellularly (Foster, 2005). S. epidermidis does not appear to
possess similar mechanisms. However, some strains are killed
less efficiently, potentially by having a low capacity to prime
the oxidative response of neutrophils (Nilsdotter-Augustinsson
et al., 2004), or as described before by their biofilm mode of
growth. These observations, together with lower induction of
neutrophil apoptosis, may lead to intracellular survival and could
partially explain the low inflammatory nature and chronicity
often associated with S. epidermidis infections.

Cytokine and Chemokine Secretion
Cytokines are a broad group of secreted proteins that play
a role in intercellular communication, with a broad range

of functions within the immune system as cell recruitment,
differentiation and activation. Interleukins and other factors play
an essential role in leukocyte communication and differentiation,
while chemokines are mainly involved in cell recruitment. In
vitro stimulation of peripheral blood mononuclear cells with
different staphylococcal species showed a rapid release of pro-
inflammatory cytokines such as IL-1β, IL-6, IL-12p70, or IFN-α
(Megyeri et al., 2002). Of note, S. epidermidis induced lower
levels of pro-inflammatory cytokines compared to S. aureus
(Megyeri et al., 2002). Studies with monocytes/macrophages
have also observed IL-6, tumor necrosis factor (TNF)-α and
IL-1β release after S. epidermidis stimulation (Wilsson et al.,
2008; Strunk et al., 2012). Laborel-Préneron et al. reported that
stimulation of moDC with commensal S. epidermidis induced a
more anti-inflammatory profile in contrast to stimulation with
commensal strains of S. aureus, with high levels of IL-10 being
a key differentiator. Nevertheless, pro-inflammatory cytokines
such as IL-6 and TNF-α were also detected (Laborel-Preneron
et al., 2015). Similar observations have been made from in
vivo studies: IL-6, TNF-α, and IL-1β are typically observed in
serum in the first hours post-challenge with live or inactivated
S. epidermidis (Wakabayashi et al., 1991; Simojoki et al., 2011; Bi
et al., 2015; Ferreirinha et al., 2016; Qin et al., 2017), or in tissue
exudates/homogenates from experimental DRI models (Boelens
et al., 2000b; Svensson et al., 2015). The regulatory cytokine IL-10
is also present in vivo (Ferreirinha et al., 2016) and it has been
shown that S. epidermidis inoculation result in higher IL-10 levels
compared to P. aeruginosa in an intradermal infection model
(Bialecka et al., 2005). In a S. epidermidisDRImouse model it was
shown that IL-10 was involved in reducing infection-associated
morbidity, with higher levels of pro-inflammatory cytokines
and greater weight loss in IL-10 KO animals. Interestingly,
bacterial counts were the same in both wild-type and KO
strains, suggesting that IL-10 does not impact bacterial clearance
(Gutierrez-Murgas et al., 2016). Overall, despite differences due
to different S. epidermidis strains and its effect in different tissues,
it can be hypothesized that lower induction of pro-inflammatory
cytokines together with high IL-10 production, can contribute to
the sub-acute nature of S. epidermidis infections.

Multiple chemokines are also released upon S. epidermidis
infection. Secretion of IL-8, important for neutrophil
recruitment, has been described in vitro and in the first
hours post-infection in in vivo studies (Wakabayashi et al.,
1991; Boelens et al., 2000b; Simojoki et al., 2011; Svensson et al.,
2015). CXCL-1 and CXCL-2, mostly produced by macrophages
(via TLR-2 recognition but also by other mechanisms), have
also been observed in bacteraemia and peritonitis models
(Strunk et al., 2010; Bi et al., 2015; Ferreirinha et al., 2016; Qin
et al., 2017). Additionally, a murine peritonitis model revealed
increasing levels of numerous chemokines upon challenge with
S. epidermidis supernatants (Perks et al., 2016).

Platelet Activation/Aggregation
The aggregation and activation of platelets in the presence of
bacteria was first described over 25 years ago (Usui et al.,
1991) and yet the nature of this interaction has only recently
been elucidated. Platelets and bacteria can interact in three
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ways: the indirect binding of bacteria to a plasma protein
(which is a ligand of a platelet receptor), the direct recognition
of bacteria by platelet receptors and the binding of secreted
bacterial products to platelets (Hamzeh-Cognasse et al., 2015).
Only the first type has been described for S. epidermidis, where
the SdrG has been described to bind platelets in a fibrinogen
and Ig-dependent manner; an interaction that leads to platelet
aggregation (Brennan et al., 2009). S. aureus or Streptococcus
have been shown to interact with platelets in other ways,
which can lead to sepsis or thrombosis but also can play
a role in internalization of bacteria by platelets or release
of antimicrobial components and immunomodulatory factors
(Hamzeh-Cognasse et al., 2015). Future studies will be required to
elucidate if S. epidermidis-platelets interaction is limited to SdrG
or if, like other bacteria, possess multiple mechanisms.

Adaptive Immune Response during
Infection
Adaptive immunity refers to antigen-specific and long-lasting
immune responses that are mediated by lymphocytes. Adaptive
immunity can be broadly divided in cellular responses,
represented by T helper (Th) and cytotoxic T lymphocytes,
and humoral responses, represented by B lymphocytes and
antibodies. Classically, extracellular bacterial infections have
been shown to trigger mostly Th1 cell responses, but more
recently Th17 responses have also been linked to the clearance
of bacterial infections. Of relevance, an in vivo model using
immunocompromised mice have shown a higher susceptibility
for S. epidermidis DRI in mice lacking T cells or T and B cells
(Vuong et al., 2008), highlighting a role for adaptive immune
responses in infection clearance.

Arising from its status as a commensal microorganism,
S. epidermidis is expected to elicit adaptive immune responses in
humans from early in life. This has been proposed to be largely
triggered by a pattern of transient self-resolving infections due to
micro-invasions, rather than resulting from local response due
to colonization (Brown et al., 2014), but the latter cannot be
excluded. These life-long interactions will lead to the generation
of an antibody repertoire and a set of memory T and B cells
that may confer partial protection from infection. Generation of
adaptive immune responses require the presentation of antigens
to T cells by antigen presenting cells (APCs), primarily dendritic
cells (DC), which will also contribute to T cell polarization. It
has previously been shown that CD103+ skin-resident DC, upon
interaction with commensal S. epidermidis, generates CD8+IL-
17A+ T cells with the capacity to enhance protective responses in
the skin (Naik et al., 2015). Upon infection, it can also be expected
that certain DC subtypes, already present in the tissue or that
will migrate there, will shape adaptive immune responses. Data
available for S. epidermidis interaction with DC is very limited
but it has been observed, in vitro and in vivo, that S. epidermidis
can lead to DC activation with an increase in co-stimulatory
molecules such as CD86 or CD80 and antigen presenting
molecules such as major histocompatibility complex (MHC)-II
(Stanislawska et al., 2005; Cerca et al., 2014; Laborel-Preneron
et al., 2015; Franca et al., 2016). Studies describing cytokine

secretion by DC stimulated with S. epidermidis (whole bacteria
or its secreted proteins) have yielded somewhat inconsistent
results. For example, IL-10 was not highly secreted when bone-
marrow DC were stimulated with S. epidermidis (Cerca et al.,
2014), but the stimulation of moDC with S. epidermidis secreted
proteins led to high IL-10 secretion (Laborel-Preneron et al.,
2015). The inconsistency between these reports may be due
to the different sources of DC and stimuli used, which can
lead to different outcomes by activating distinct pathways. The
relevance of the stimuli is further highlighted in a series of
experiments from Durantez et al. S. epidermidis PSM-derived
peptides combined with ovalbumin were able to trigger cytotoxic
T cell responses, however, this was only observed after those
peptides were presented via APCs together with stimuli specific
for TLR-3, TLR-7, and TLR-9 (Durantez et al., 2010). Further
experiments are required to clarify the exact role of APCs
and different DC subsets in priming and polarizing the T cell
response.

With regards to humoral responses, antibodies against
S. epidermidis proteins have been detected in serum and saliva
of healthy individuals (Sadovskaya et al., 2007; Carvalhais et al.,
2015), but levels are generally lower compared to S. epidermidis
infected patients (Sadovskaya et al., 2007). Antibodies against
biofilm components and cytoplasmic proteins have been found
to be predominant (Carvalhais et al., 2015).

To assess the potential use of antibody titers in diagnosis of
infection, serum antibody titters against Staphylococcal proteins
have been measured in patients with S. aureus or S. epidermidis
infections (such as wound infections, bacteremia or DRI).
Recently, a multiplex antibody detection-based immunoassay
was evaluated for the diagnosis of peri prosthetic joint infections
(PJI). The assay included protein antigens from several strains:
diverse Staphylococci, Streptococcus agalactiae and P. acnes
(Marmor et al., 2016). The test showed a slightly lower sensitivity
than C-reactive protein and erythrocyte sedimentation rate,
however was able to diagnose around 50% of patients, which were
culture positive but presented low systemic inflammation values
(Marmor et al., 2016).

Another goal of humoral response studies is to identify
immunogenic proteins, which can lead to development of
therapeutic and/or prophylactic treatments. Studies employing
2D protein electrophoresis or phage display technology with
the aim of identifying S. epidermidis immunogenic proteins
have been performed in rabbits (Sellman et al., 2005) and
humans (Pourmand et al., 2006). Sera of rabbits immunized with
live S. epidermidis were used to detect relevant immunogens.
Mice were then immunized with several selected proteins, five
of whom (Na+/H+ antiporter, Acetyl-CoA C-acetyltransferase,
lipoate ligase, cysteine synthase and alanine dehydrogenase) lead
to a significant reduction of bacterial loads in a murine infection
model (Sellman et al., 2005). Other proposed immunogenic
proteins include AtlE, Staphylococcal conserved antigen B
(ScaB), and GehD lipase, which elicited higher antibody titers
in infected patients compared to non-infected subjects. Active
immunization of mice with these antigens resulted in production
of specific antibodies with in vitro opsonization capacity against
S. epidermidis (Pourmand et al., 2006). An anti-SdrG antibody
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was shown to reduce mortality in a neonate bacteremia rat
model and to decrease bacterial counts in a DRI (endocarditis)
rabbit model (Vernachio et al., 2006), although it failed in a
clinical trial to prevent late-onset sepsis in low-birth weight
neonates (Schaffer and Lee, 2009). More recently it was shown
that immunization with staphylococcal Major amidase (Atl-
AM), a cell wall hydrolase present in some S. epidermidis and
S. aureus strains, increases antibody levels against that protein in
mice (Nair et al., 2015). In the same study, immunized animals
challenged with a lethal intraperitoneal dose of S. epidermidis
showed a better survival and lower bacterial counts in tissues
compared to mock immunized animals (Nair et al., 2015).
Additionally, immunized mice also presented higher levels of
Th1 and Th2 cells, although it did not elucidate which responses
were the most relevant for the increased survival. Immunizations
with Aap or with antibodies against surface proteins have also
been shown to reduce colonization in a murine DRI model
by ultimately inhibiting biofilm formation (Shahrooei et al.,
2012; Yan et al., 2014). Despite the fact that their efficacy
against S. epidermidis infections has not been tested in vivo,
antibodies against PNAG/PIA and phosphonate ABC transporter
substrate binding protein (PhnD) have shown efficacy against
S. epidermidis biofilm formation in vitro (Franca et al., 2013; Lam
et al., 2014). A recent study focused on staphylococcal adhesion
proteins, which contain long stretches of Sdr and are key
virulence factors for S. epidermidis and also S. aureus. The study
led to the discovery of two novel bacterial glycosyltransferases,
SdgA and SdgB, which can modify all Sdr-proteins to protect
them from cleavage by cathepsin G (a neutrophil protein).
Neutralization of these enzymes may be the next opportunity
for an effective anti-staphylococcal approach (Hazenbos et al.,
2013). To date, all anti-staphylococcal antibodies tested against
S. epidermidis and other CoNS in clinical trials (Altastaph, INH
A-2, and Pagibaximab) have been found to be ineffective in
reducing bacteremia in neonates (Patel and Kaufman, 2015).
Although there is still much work to be done to fully understand
effective immune responses against S. epidermidis, on-going
research offers several candidates and strategies to develop new
therapeutic products.

Additionally, there are also T cell-mediated immune
responses to S. epidermidis although they are poorly
characterized. Based on in vitro studies, it has been suggested
that S. epidermidis opsonization with IgG promotes Th17
responses (den Dunnen et al., 2012), although the role of this
phenomenon in vivo has not been shown. On the other hand, in
an in vivo model of foreign-body infection, a beneficial effect of
IFN-γ injections has been shown, suggesting a protective role
of Th1 dominated responses in bacterial infections (Boelens
et al., 2000a). Based on cytokines induced by S. epidermidis in
the different studies (e.g., IL-6, IFN-γ, or IL-12), a Th1/Th17
polarization may be expected in such infections. This goes in
line with the findings of Ferreirinha et al., who observed that
injection of PNAG-producing S. epidermidis in mice lead to
IFN-γ and IL-17A producing T cells (Ferreirinha et al., 2016).
Also, as mentioned above, immunization of mice with Atl-AM
led to an increase in Th1 and Th2 cells (Th17 cells were not
evaluated on that study). Immunization also led to a higher

survival; however, direct effect of T cell responses in that finding
was not further addressed (Nair et al., 2015).

Bone System Interactions
The usual chronic nature of S. epidermidis osteomyelitis will
eventually lead to an inflammatory environment within the
bone system, which is of special relevance in the context of
ODRIs. Bone as an organ is particularly sensitive to chronic
inflammation, due to its continuous remodeling process that
is influenced by different components of the immune system
and inflammatory pathways (Redlich and Smolen, 2012). Due
to their potent capacity to stimulate the formation and activity
of bone resorbing osteoclasts, pro-inflammatory cytokines such
as TNF-α, IL-1β, and IL-6 (Raisz, 1999; Kobayashi et al., 2000;
Lam et al., 2000) are powerful drivers of osteolysis. Conversely,
the function of the bone matrix-producing cells, osteoblasts,
is also negatively affected by pro-inflammatory cytokines, such
as TNF-α (Jilka et al., 1998; Gilbert et al., 2000, 2002) or
IL-1β (Stashenko et al., 1987; Figure 4). Therefore, persistently
elevated levels of pro-inflammatory cytokines in the local bone
microenvironment frequently result in marked osteolysis, driven
by enhanced osteoclast activity at the site of infection (Figure 4;
Nair et al., 1996), which is likely compounded by a diminished
capacity of osteoblasts to produce new bone matrix.

Despite the importance of S. epidermidis as a causative agent in
ODRI, relatively little information exists about the interactions of
S. epidermidiswith resident bone cells, in particular themolecular
mechanisms underlying the bone loss observed in S. epidermidis-
induced osteomyelitis. The production of cytokines by innate
and/or adaptive immune cells in response to S. epidermidis is
undoubtedly an important contributor to the enhanced bone
resorption observed at the site of infection, however it is
becoming apparent that the osteoblast itself may also directly
contribute to the production of pro-inflammatory cytokines
and therefore further perturb the balance of bone formation
and resorption in favor of bone destruction. A recent study
has shown the induction in vitro of IL-6 by primary human
osteoblasts stimulated with S. epidermidis (Dapunt et al., 2016b).
S. epidermidis infection also induced chemokines, such as
IL-8/CXCL8 and CCL2/MCP-1, suggesting that osteoblasts may
be capable of further recruiting immune cells following an
encounter with S. epidermidis. Interestingly, the authors also
demonstrated that osteoblasts were activated not only by the
planktonic form of S. epidermidis but also by components
of S. epidermidis biofilms. This suggests that, rather than the
relatively simplistic view of the osteoblast for producing bone
matrix and regulating osteoclast activity, osteoblasts may also
serve an important role as sensors and initiators of immune
responses directed against bacteria resident in the local bone
microenvironment.

Additionally, in vitro studies have observed a decrease in
osteoblast viability when co-cultured with S. epidermidis (Lee
et al., 2010; Zaatreh et al., 2016). S. epidermidis products
(resulting from washing bacteria) have been suggested to induce
bone destruction as they increased calcium release from murine
bones in vitro (Meghji et al., 1997). This is in stark contrast to
S. aureus, which has been extensively studied in this context and
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FIGURE 4 | S. epidermidis direct and indirect effects on bone cells (osteoblasts and osteoclasts), leading to bone destruction.

is capable of influencing the behavior of both osteoblasts and
osteoclasts. For example, S. aureus has been demonstrated to
induce TRAIL-dependent apoptosis in osteoblasts (Tucker et al.,
2000; Alexander et al., 2001, 2003; Young et al., 2011) and can
stimulate expression of osteolytic factors (Somayaji et al., 2008)
or reduce the expression of its inhibitors (Young et al., 2011),
exacerbating the osteolytic effect. Furthermore, specific bacterial
proteins have been identified as responsible for some of these
effects on osteoblasts such as S. aureus protein A, which has been
demonstrated to bind directly to TNF receptor 1, resulting in
an inhibitory effect on proliferation, the induction of apoptosis,
and the stimulation of RANKL expression (Claro et al., 2011,
2013).

Regarding the effects of bacterial infection on osteoclasts,
a number of studies have reported the effects of inactivated
S. aureus, or specific S. aureus components, for affecting
osteoclast formation and/or activity (Yang et al., 2009;
Pietrocola et al., 2011; Kishimoto et al., 2012; Kim et al., 2013).
Conversely, staphylococcal LTA inhibits osteoclastogenesis
through stimulation of TLR-2 activity (Yang et al., 2009). Such
conflicting data strongly argues for the use of (preferably live)
intact bacteria in such osteoclastogenesis assays rather than
purified bacterial components. When the effect of intact bacteria
on osteoclastogenesis was recently investigated, S. aureus was
demonstrated to have both direct and indirect stimulatory
effects on osteoclasts in vitro (Trouillet-Assant et al., 2015). By
inducing activation of macrophages and thereby stimulating
the production of pro-inflammatory cytokines, S. aureus
indirectly enhanced the formation of osteoclasts from precursor
cells. Additionally, S. aureus could also directly infect mature
osteoclasts, resulting in increased cell fusion and enhanced
bone resorbing capacity. Much less is known regarding direct
interaction of S. epidermidis and osteoclasts, although it is
expected that induction of pro-inflammatory cytokines will
enhance bone destruction in similar ways.

Given the multitude of different effects of S. aureus on
osteoblast and osteoclast function, it is likely that S. epidermidis
can also negatively affect the capacity of osteoblasts to produce
bone matrix and/or enhance osteoclast formation and function,
althoughmuch further work is necessary to clarify if this is indeed
the case.

Lastly, the interaction of S. epidermidis with bone cells could
provide a location where bacteria can persist and prolong ODRIs.
Both S. aureus and S. epidermidis are capable of invading
osteoblasts in vitro (Ahmed et al., 2001; Khalil et al., 2007),
however the mechanism underlying this phenomenon appears
to differ between these two species. S. aureus requires binding to
the ECM protein fibronectin, mediated by α5β1 integrin (Sinha
et al., 1999), whereas S. epidermidis internalization by osteoblasts
is not affected by interfering with fibronectin binding or blocking,
suggesting a different mechanism (Khalil et al., 2007). This
is supported by the findings of a recent study that reported
SdrG mediates the binding of S. epidermidis to osteoblasts in
vitro, an effect likely mediated through SdrG binding to αVβ3
integrin (Claro et al., 2015). However, this immune evasion
mechanism may be of more importance for S. aureus rather
than S. epidermidis per se, since the capacity of S. epidermidis for
invading osteoblasts in vitro does not appear to differ between
commensal strains and clinical isolates of S. epidermidis obtained
from infected orthopedic devices (Valour et al., 2013). This
is reinforced by a recent in vitro study demonstrating that
S. epidermidis as well as other opportunistic pathogens such
as S. lugdunensis and Enterococcus faecalis were incompetent
at being internalized by MG63 human osteoblastic cells, being
internalized at a level approximately three orders of magnitude
lower than that observed with S. aureus (Campoccia et al.,
2015). Osteoclasts are also able to internalize, at least, S. aureus.
Given the inherent phagocytic capacity of osteoclasts, it may be
that internalization of S. aureus by osteoclasts relies on such a
phagocytic mechanism of uptake. This raises the possibility that
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S. epidermidis may also be the object of uptake by osteoclasts.
Together with the previously stated ability of S. epidermidis to
bind to αVβ3 integrin, which is highly expressed by osteoclasts
(Quinn et al., 1991), this further suggests that S. epidermidis
may bind to and be internalized by osteoclasts, although this
and the subsequent phenotypical changes resulting from such
an interaction requires to be validated experimentally. Taken
together, this suggests that while the persistence of orthopedic
implant-associated S. aureus infections in vivo may well stem
from its enhanced ability to invade osteoblasts, and potentially
osteoclasts, other mechanisms, such as biofilm formation, may
underlie the persistence of S. epidermidis in implant-related
infection.

Finally, the integration of immune responses within the bone
system in the context of S. epidermidis infection has been largely
unexplored. The number of models described for S. epidermidis
bone infection is limited (Table 1) and none have really focused
on host immune responses. Most of the data available is based on
S. aureus models, where a combination of Th1/Th17 responses
have been observed (Prabhakara et al., 2011a; Rochford et al.,
2016), although it is not clear if this response is beneficial or
detrimental to the host as no bacterial clearance was achieved
(Prabhakara et al., 2011b; Jensen et al., 2015). The observation
that anti-IL-12p40 conferred protection in S. aureus infected
C57BL/6 mice supported the hypothesis that skewed Th1/Th17
responses may be harmful (Prabhakara et al., 2011b), as IL-
12/IL-23p40 plays a role in polarization of these cell types. This
observation, however, could be due to a decrease in myeloid-
derived suppressor cells (MDSC) that otherwise would impair
immune responses in the vicinity of an implant, as described by
Heim et al. (2015). The use of different murine strains, inoculum
dose and models are factors contributing to the disparity in the
available data. Furthermore, the differences between S. aureus
and S. epidermidis are quite significant, and so further work
focused on S. epidermidis is required to provide a proper
understanding of adaptive immune responses to S. epidermidis
bone infection.

SUMMARY AND OUTLOOK

S. epidermidis is a commensal microorganism adapted for the
colonization of human skin. In healthy individuals, S. epidermidis
can provide several benefits by competing with pathogenic
species or by modulating the immune system. Induction of
tolerance has been demonstrated recently in murine models
although similar mechanisms remain to be proven in humans.
The great advances in “omics” are providing enormous
amounts of data about cell/tissue behavior and also about
human microbiome (from transcriptome to metabolome). The
application and integration of this data for S. epidermidis
commensalism will provide a much better understanding of the
roles of S. epidermidis in health and also in certain skin diseases,
such as atopic dermatitis or psoriasis.

Upon a transition to a pathogenic interaction with the host, as
occurs in DRI, the same mechanisms that allow S. epidermidis
to reside in human skin and mucosal tissues allow adhesion
and biofilm formation upon the implanted device. Adhesion
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to host proteins and biofilm formation are thought to be the
main S. epidermidis pathogenic mechanisms. For this reason, the
development of antimicrobial surfaces and therapies targeting
biofilm are areas which are expected to be in development
in the coming years. In the face of high antibiotic resistance,
these technologies may need to consider alternative antimicrobial
agents.

Finally, there remains a lack of understanding of immune
responses to S. epidermidis infections. S. epidermidis seems to
trigger low levels of pro-inflammatory cytokines secretion and
high levels of IL-10, which may contribute to the sub-acute
nature and persistence of the infection. As yet, adaptive immune
responses to the bacterium remain poorly described and are an
area whichmay provide significant new discoveries in the coming
years.
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