2,024 research outputs found

    Instrumentos de gestión en el planeamiento estratégico por objetivos en cuatro instituciones educativas públicas, Jicamarca, Lima, 2022

    Get PDF
    La investigación realizada presentó el objetivo general. Establecer de qué manera influyen los instrumentos de gestión en el planeamiento estratégico por objetivos, en cuatro instituciones educativas públicas, Jicamarca, Lima, 2022. La propuesta metodológica del presente estudio tiene un enfoque cuantitativo, de tipo aplicado, correlacional y diseño no experimental, de corte transversal. Los métodos utilizados fueron el hipotético-deductivo y estadístico. La población estuvo constituida por 100 docentes, de la cual se seleccionó una muestra no probabilístico intencional de 80 individuos, se aplicó la técnica de la encuesta, sobre la base de un conjunto de preguntas estructuradas y articuladas que nos proporcionó insumos para su análisis cuantitativo, la validación de las variables fue sometido a juicio de expertos y prueba de alfa de Cronbach, arrojando 0.9 de excelente confiabilidad para la variable independiente instrumentos de gestión y 0.7 muy confiable para la variable dependiente planeamiento estratégico por objetivos. La correlación de Rho Spearman de las variables instrumentos de gestión y planeamiento estratégico es de 0,816, indica que existe una correlación positiva alta en ambas variables, además existe una significación bilateral de 0,000 entre ambas variables. Esto permite concluir que los instrumentos de gestión influyen significativamente con el planeamiento estratégico por objetivos

    Chronodisruption and Ambulatory Circadian Monitoring in Cancer Patients: Beyond the Body Clock

    Get PDF
    Purpose of Review: Circadian rhythms impose daily rhythms a remarkable variety of metabolic and physiological functions, such as cell proliferation, inflammation, and DNA damage response. Accumulating epidemiological and genetic evidence indicates that circadian rhythms’ disruption may be linked to cancer. The integration of circadian biology into cancer research may offer new options for increasing cancer treatment effectiveness and would encompass the prevention, diagnosis, and treatment of this disease. Recent Findings: In recent years, there has been a significant development and use of multi-modal sensors to monitor physical activity, sleep, and circadian rhythms, allowing, for the very first time, scaling accurate sleep monitoring to epidemiological research linking sleep patterns to disease, and wellness applications providing new potential applications. Summary: This review highlights the role of circadian clock in tumorigenesis, cancer hallmarks and introduces the state-of-the-art in sleep-monitoring technologies, discussing the eventual application of insights in clinical settings and cancer research.publishersversionpublishe

    Chronodisruption and Ambulatory Circadian Monitoring in Cancer Patients: Beyond the Body Clock.

    Get PDF
    Purpose of Review Circadian rhythms impose daily rhythms a remarkable variety of metabolic and physiological functions, such as cell proliferation, infammation, and DNA damage response. Accumulating epidemiological and genetic evidence indicates that circadian rhythms’ disruption may be linked to cancer. The integration of circadian biology into cancer research may ofer new options for increasing cancer treatment efectiveness and would encompass the prevention, diagnosis, and treatment of this disease. Recent Findings In recent years, there has been a signifcant development and use of multi-modal sensors to monitor physical activity, sleep, and circadian rhythms, allowing, for the very frst time, scaling accurate sleep monitoring to epidemiological research linking sleep patterns to disease, and wellness applications providing new potential applications. Summary This review highlights the role of circadian clock in tumorigenesis, cancer hallmarks and introduces the stateof-the-art in sleep-monitoring technologies, discussing the eventual application of insights in clinical settings and cancer research.post-print1077 K

    Chronodisruption and Ambulatory Circadian Monitoring in Cancer Patients: Beyond the Body Clock

    Full text link
    Purpose of Review: Circadian rhythms impose daily rhythms a remarkable variety of metabolic and physiological functions, such as cell proliferation, inflammation, and DNA damage response. Accumulating epidemiological and genetic evidence indicates that circadian rhythms’ disruption may be linked to cancer. The integration of circadian biology into cancer research may offer new options for increasing cancer treatment effectiveness and would encompass the prevention, diagnosis, and treatment of this disease. Recent Findings: In recent years, there has been a significant development and use of multi-modal sensors to monitor physical activity, sleep, and circadian rhythms, allowing, for the very first time, scaling accurate sleep monitoring to epidemiological research linking sleep patterns to disease, and wellness applications providing new potential applications. Summary: This review highlights the role of circadian clock in tumorigenesis, cancer hallmarks and introduces the state-of-the-art in sleep-monitoring technologies, discussing the eventual application of insights in clinical settings and cancer researchThis work was supported in part by CLARIFY project, within European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No. 875160, Instituto de Fomento de la Región de Murcia (INFO) and the European Regional Development Fund (FEDER

    Combining of MASW and GPR Imaging and Hydrogeological Surveys for the Groundwater Resource Evaluation in a Coastal Urban Area in Southern Spain

    Get PDF
    This paper conceptualizes and evaluates the groundwater resource in a coastal urban area hydrologically influenced by peri-urban irrigation agriculture. Adra town in southern Spain was the case study chosen to evaluate the groundwater resource contributed from the northern steep urban sector (NSUS) to the southern flat urban sector (SFUS), which belongs to the Adra River Delta Groundwater Body (ARDGB). The methodology included (1) geological and hydrogeological data compilation; (2) thirteen Multichannel Analysis of Surface Waves (MASW), and eight Ground Penetrating Radar (GPR) profiles to define shallow geological structures and some hydrogeological features; (3) hydrogeological surveys for aquifer hydraulic definition; (4) conceptualization of the hydrogeological functioning; and (5) the NSUS groundwater resource evaluation. All findings were integrated to prepare a 1:5000 scale hydrogeological map and cross-sections. Ten hydrogeological formations were defined, four of them (Paleozoic weathered bedrock, Pleistocene littoral facies, Holocene colluvial, and anthropogenic filling) in the NSUS contributing to the SFUS. The NSUS groundwater discharge and recharge are, respectively, around 0.28 Mm3 year−1 and 0.31 Mm3 year−1, and the actual groundwater storage is around 0.47 Mm3. The groundwater renewability is high enough to guarantee a durable small exploitation for specific current and future urban water uses which can alleviate the pressure on the ARDGB

    Detector Simulation Challenges for Future Accelerator Experiments

    Get PDF
    Detector simulation is a key component for studies on prospective future high-energy colliders, the design, optimization, testing and operation of particle physics experiments, and the analysis of the data collected to perform physics measurements. This review starts from the current state of the art technology applied to detector simulation in high-energy physics and elaborates on the evolution of software tools developed to address the challenges posed by future accelerator programs beyond the HL-LHC era, into the 2030–2050 period. New accelerator, detector, and computing technologies set the stage for an exercise in how detector simulation will serve the needs of the high-energy physics programs of the mid 21st century, and its potential impact on other research domains

    Phylogenomic Identification of Regulatory Sequences in Bacteria: an Analysis of Statistical Power and an Application to Borrelia burgdorferi Sensu Lato

    Full text link
    Phylogenomic footprinting is an approach for ab initio identification of genome-wide regulatory elements in bacterial species based on sequence conservation. The statistical power of the phylogenomic approach depends on the degree of sequence conservation, the length of regulatory elements, and the level of phylogenetic divergence among genomes. Building on an earlier model, we propose a binomial model that uses synonymous tree lengths as neutral expectations for determining the statistical significance of conserved intergenic spacer (IGS) sequences. Simulations show that the binomial model is robust to variations in the value of evolutionary parameters, including base frequencies and the transition-to-transversion ratio. We used the model to search for regulatory sequences in the Lyme disease species group (Borrelia burgdorferi sensu lato) using 23 genomes. The model indicates that the currently available set of Borrelia genomes would not yield regulatory sequences shorter than five bases, suggesting that genome sequences of additional B. burgdorferi sensu lato species are needed. Nevertheless, we show that previously known regulatory elements are indeed strongly conserved in sequence or structure across these Borrelia species. Further, we predict with sufficient confidence two new RpoS binding sites, 39 promoters, 19 transcription terminators, 28 noncoding RNAs, and four sets of coregulated genes. These putative cis- and trans-regulatory elements suggest novel, Borrelia-specific mechanisms regulating the transition between the tick and host environments, a key adaptation and virulence mechanism of B. burgdorferi. Alignments of IGS sequences are available on BorreliaBase.org, an online database of orthologous open reading frame (ORF) and IGS sequences in Borrelia

    BorreliaBase: a phylogeny-centered browser of Borrelia genomes

    Get PDF
    Background The bacterial genus Borrelia (phylum Spirochaetes) consists of two groups of pathogens represented respectively by B. burgdorferi, the agent of Lyme borreliosis, and B. hermsii, the agent of tick-borne relapsing fever. The number of publicly available Borrelia genomic sequences is growing rapidly with the discovery and sequencing of Borrelia strains worldwide. There is however a lack of dedicated online databases to facilitate comparative analyses of Borrelia genomes. Description We have developed BorreliaBase, an online database for comparative browsing of Borrelia genomes. The database is currently populated with sequences from 35 genomes of eight Lyme-borreliosis (LB) group Borrelia species and 7 Relapsing-fever (RF) group Borrelia species. Distinct from genome repositories and aggregator databases, BorreliaBase serves manually curated comparative-genomic data including genome-based phylogeny, genome synteny, and sequence alignments of orthologous genes and intergenic spacers. Conclusions With a genome phylogeny at its center, BorreliaBase allows online identification of hypervariable lipoprotein genes, potential regulatory elements, and recombination footprints by providing evolution-based expectations of sequence variability at each genomic locus. The phylo-centric design of BorreliaBase (http://borreliabase.org) is a novel model for interactive browsing and comparative analysis of bacterial genomes online

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
    corecore