899 research outputs found

    Laminar degeneration of frontal and temporal cortex in Parkinson disease dementia

    Get PDF
    To investigate cortical laminar degeneration in Parkinson’s disease (PD) with dementia (PDD). Changes in density of α-synuclein-immunoreactive Lewy bodies (LB), Lewy neurites (LN), and Lewy grains (LG) together with surviving neurons, abnormally enlarged neurons (EN), vacuoles, and glial cell nuclei were measured across cortical laminae of frontal and temporal cortex in fifteen cases of PDD using quantitative methods and polynomial curve-fitting. Most frequently, LB and LN were distributed across all laminae, while LG were distributed in upper cortical laminae. Low densities of EN were present in most cases distributed across all cortical laminae. Densities of vacuoles and glia were greatest in upper and lower cortical laminae, respectively. In most gyri, there were no spatial correlations between the densities of LB, LN, and LG. Cortical degeneration of frontal and temporal lobes in PDD affects all cortical laminae. Laminar distributions may result from the spread of α-synuclein pathology from subcortical regions and subsequent spread via the cortico-cortical pathways. This spread may be a major factor in the development of dementia in PD

    Integrating Phosphorylation Network with Transcriptional Network Reveals Novel Functional Relationships

    Get PDF
    Phosphorylation and transcriptional regulation events are critical for cells to transmit and respond to signals. In spite of its importance, systems-level strategies that couple these two networks have yet to be presented. Here we introduce a novel approach that integrates the physical and functional aspects of phosphorylation network together with the transcription network in S.cerevisiae, and demonstrate that different network motifs are involved in these networks, which should be considered in interpreting and integrating large scale datasets. Based on this understanding, we introduce a HeRS score (hetero-regulatory similarity score) to systematically characterize the functional relevance of kinase/phosphatase involvement with transcription factor, and present an algorithm that predicts hetero-regulatory modules. When extended to signaling network, this approach confirmed the structure and cross talk of MAPK pathways, inferred a novel functional transcription factor Sok2 in high osmolarity glycerol pathway, and explained the mechanism of reduced mating efficiency upon Fus3 deletion. This strategy is applicable to other organisms as large-scale datasets become available, providing a means to identify the functional relationships between kinases/phosphatases and transcription factors

    Loss-of-function of the Voltage-gated Sodium Channel NaV1.5 (Channelopathies) in Patients with Irritable Bowel Syndrome.

    Get PDF
    Background & Aims SCN5A encodes the α-subunit of the voltage-gated sodium channel NaV1.5. Many patients with cardiac arrhythmias caused by mutations in SCN5A also have symptoms of irritable bowel syndrome (IBS). We investigated whether patients with IBS have SCN5A variants that affect the function of NaV1.5. Methods We performed genotype analysis of SCN5A in 584 persons with IBS and 1380 without IBS (controls). Mutant forms of SCN5A were expressed in human embryonic kidney-293 cells, and functions were assessed by voltage clamp analysis. A genome-wide association study was analyzed for an association signal for the SCN5A gene, and replicated in 1745 patients in 4 independent cohorts of IBS patients and controls. Results Missense mutations were found in SCN5A in 13 of 584 patients (2.2%, probands). Diarrhea-predominant IBS was the most prevalent form of IBS in the overall study population (25%). However, a greater percentage of individuals with SCN5A mutations had constipation-predominant IBS (31%) than diarrhea-predominant IBS (10%; P <.05). Electrophysiologic analysis showed that 10 of 13 detected mutations disrupted NaV1.5 function (9 loss-of-function and 1 gain-of-function function). The p. A997T-NaV1.5 had the greatest effect in reducing NaV1.5 function. Incubation of cells that expressed this variant with mexiletine restored their sodium current and administration of mexiletine to 1 carrier of this mutation (who had constipation-predominant IBS) normalized their bowel habits. In the genome-wide association study and 4 replicated studies, the SCN5A locus was strongly associated with IBS. Conclusions About 2% of patients with IBS carry mutations in SCN5A. Most of these are loss-of-function mutations that disrupt Na V1.5 channel function. These findings provide a new pathogenic mechanism for IBS and possible treatment options

    Up-regulation of multiple proteins and biological processes during maxillary expansion in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Maxillary expansion (ME) is a common practice in orthodontics that aims to increase the constricted maxillary arch width. Relapse often occurs, however, and better treatment strategies are needed. In order to develop a more effective method, this study was designed to further examine the process of tissue remodeling during ME, to identify the changes in expression of several proteins of interest, and to clarify the molecular mechanism responsible for tissue remodeling.</p> <p>Methods</p> <p>Male Wistar rats were randomly divided into control and ME groups. The rats were euthanized at various intervals over 11 days, and the dissected palates were prepared for histological examination. The structure of the midpalatal sutures changed little during the first three days. Proteins from samples in the ground midpalatal tissues obtained on the third day were subjected to two-dimensional polyacrylamide gel electrophoresis (2-DE) and matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Validation of protein expression was performed by Western blot analyses.</p> <p>Results</p> <p>From day 5, chondrocytes in the inner layer of suture cartilage and osteoblasts at the end of the suture cartilage began to proliferate, and the skeletal matrix increased later adjacent to the cartilage in the ME group. Comparative proteomic analysis showed increases in 22 protein spots present in the ME group. The changes in three proteins closely related to osteogenesis (parathyroid hormone, osteoprotegerin and vimentin) were confirmed by Western blotting.</p> <p>Conclusion</p> <p>Many proteins are over-expressed during ME, and they may play an important role in the remodeling process.</p

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells

    Get PDF
    Glioblastoma multiforme (GBM) is an invariably fatal central nervous system tumor despite treatment with surgery, radiation, and chemotherapy. Further insights into the molecular and cellular mechanisms that drive GBM formation are required to improve patient outcome. MicroRNAs are emerging as important regulators of cellular differentiation and proliferation, and have been implicated in the etiology of a variety of cancers, yet the role of microRNAs in GBM remains poorly understood. In this study, we investigated the role of microRNAs in regulating the differentiation and proliferation of neural stem cells and glioblastoma-multiforme tumor cells.status: publishe

    Body iron metabolism and pathophysiology of iron overload

    Get PDF
    Iron is an essential metal for the body, while excess iron accumulation causes organ dysfunction through the production of reactive oxygen species. There is a sophisticated balance of body iron metabolism of storage and transport, which is regulated by several factors including the newly identified peptide hepcidin. As there is no passive excretory mechanism of iron, iron is easily accumulated when exogenous iron is loaded by hereditary factors, repeated transfusions, and other diseased conditions. The free irons, non-transferrin-bound iron, and labile plasma iron in the circulation, and the labile iron pool within the cells, are responsible for iron toxicity. The characteristic features of advanced iron overload are failure of vital organs such as liver and heart in addition to endocrine dysfunctions. For the estimation of body iron, there are direct and indirect methods available. Serum ferritin is the most convenient and widely available modality, even though its specificity is sometimes problematic. Recently, new physical detection methods using magnetic resonance imaging and superconducting quantum interference devices have become available to estimate iron concentration in liver and myocardium. The widely used application of iron chelators with high compliance will resolve the problems of organ dysfunction by excess iron and improve patient outcomes

    One-Pot Green Synthesis and Bioapplication ofl-Arginine-Capped Superparamagnetic Fe3O4 Nanoparticles

    Get PDF
    Water-solublel-arginine-capped Fe3O4 nanoparticles were synthesized using a one-pot and green method. Nontoxic, renewable and inexpensive reagents including FeCl3,l-arginine, glycerol and water were chosen as raw materials. Fe3O4 nanoparticles show different dispersive states in acidic and alkaline solutions for the two distinct forms of surface bindingl-arginine. Powder X-ray diffraction and X-ray photoelectron spectroscopy were used to identify the structure of Fe3O4 nanocrystals. The products behave like superparamagnetism at room temperature with saturation magnetization of 49.9 emu g−1 and negligible remanence or coercivity. In the presence of 1-ethyl-3-(dimethylaminopropyl) carbodiimide hydrochloride, the anti-chloramphenicol monoclonal antibodies were connected to thel-arginine-capped magnetite nanoparticles. The as-prepared conjugates could be used in immunomagnetic assay

    Mutation Analysis of BRAF, MEK1 and MEK2 in 15 Ovarian Cancer Cell Lines: Implications for Therapy

    Get PDF
    Among gynecologic cancers, ovarian cancer is the second most common and has the highest death rate. Cancer is a genetic disorder and arises due to the accumulation of somatic mutations in critical genes. An understanding of the genetic basis of ovarian cancer has implications both for early detection and for therapeutic intervention in this population of patients.Fifteen ovarian cancer cell lines, commonly used for in vitro experiments, were screened for mutations using bidirectional direct sequencing in all coding regions of BRAF, MEK1 and MEK2. BRAF mutations were identified in four of the fifteen ovarian cancer cell lines studied. Together, these four cell lines contained four different BRAF mutations, two of which were novel. ES-2 had the common B-Raf p.V600E mutation in exon 15 and Hey contained an exon 11 missense mutation, p.G464E. The two novel B-Raf mutants identified were a 5 amino acid heterozygous deletion p.N486-P490del in OV90, and an exon 4 missense substitution p.Q201H in OVCAR 10. One of the cell lines, ES-2, contained a mutation in MEK1, specifically, a novel heterozygous missense substitution, p.D67N which resulted from a nt 199 G-->A transition. None of the cell lines contained coding region mutations in MEK2. Functional characterization of the MEK1 mutant p.D67N by transient transfection with subsequent Western blot analysis demonstrated increased ERK phosphorylation as compared to controls.In this study, we report novel BRAF mutations in exon 4 and exon 12 and also report the first mutation in MEK1 associated with human cancer. Functional data indicate the MEK1 mutation may confer alteration of activation through the MAPK pathway. The significance of these findings is that BRAF and MEK1/2 mutations may be more common than anticipated in ovarian cancer which could have important implications for treatment of patients with this disease and suggests potential new therapeutic avenues
    corecore