592 research outputs found
Networks of gravitational wave detectors and three figures of merit
This paper develops a general framework for studying the effectiveness of
networks of interferometric gravitational wave detectors and then uses it to
show that enlarging the existing LIGO-VIRGO network with one or more planned or
proposed detectors in Japan (LCGT), Australia, and India brings major benefits,
including much larger detection rate increases than previously thought... I
show that there is a universal probability distribution function (pdf) for
detected SNR values, which implies that the most likely SNR value of the first
detected event will be 1.26 times the search threshold. For binary systems, I
also derive the universal pdf for detected values of the orbital inclination,
taking into account the Malmquist bias; this implies that the number of
gamma-ray bursts associated with detected binary coalescences should be 3.4
times larger than expected from just the beaming fraction of the gamma burst.
Using network antenna patterns, I propose three figures of merit that
characterize the relative performance of different networks... Adding {\em any}
new site to the planned LIGO-VIRGO network can dramatically increase, by
factors of 2 to 4, the detected event rate by allowing coherent data analysis
to reduce the spurious instrumental coincident background. Moving one of the
LIGO detectors to Australia additionally improves direction-finding by a factor
of 4 or more. Adding LCGT to the original LIGO-VIRGO network not only improves
direction-finding but will further increase the detection rate over the
extra-site gain by factors of almost 2, partly by improving the network duty
cycle... Enlarged advanced networks could look forward to detecting three to
four hundred neutron star binary coalescences per year.Comment: 38 pages, 7 figures, 2 tables. Accepted for publication in Classical
and Quantum Gravit
Sensitivity to Gravitational Waves from Compact Binary Coalescences Achieved during LIGO's Fifth and Virgo's First Science Run
We summarize the sensitivity achieved by the LIGO and Virgo gravitational
wave detectors for compact binary coalescence (CBC) searches during LIGO's
fifth science run and Virgo's first science run. We present noise spectral
density curves for each of the four detectors that operated during these
science runs which are representative of the typical performance achieved by
the detectors for CBC searches. These spectra are intended for release to the
public as a summary of detector performance for CBC searches during these
science runs.Comment: 12 pages, 5 figure
Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts
Aims. A transient astrophysical event observed in both gravitational wave
(GW) and electromagnetic (EM) channels would yield rich scientific rewards. A
first program initiating EM follow-ups to possible transient GW events has been
developed and exercised by the LIGO and Virgo community in association with
several partners. In this paper, we describe and evaluate the methods used to
promptly identify and localize GW event candidates and to request images of
targeted sky locations.
Methods. During two observing periods (Dec 17 2009 to Jan 8 2010 and Sep 2 to
Oct 20 2010), a low-latency analysis pipeline was used to identify GW event
candidates and to reconstruct maps of possible sky locations. A catalog of
nearby galaxies and Milky Way globular clusters was used to select the most
promising sky positions to be imaged, and this directional information was
delivered to EM observatories with time lags of about thirty minutes. A Monte
Carlo simulation has been used to evaluate the low-latency GW pipeline's
ability to reconstruct source positions correctly.
Results. For signals near the detection threshold, our low-latency algorithms
often localized simulated GW burst signals to tens of square degrees, while
neutron star/neutron star inspirals and neutron star/black hole inspirals were
localized to a few hundred square degrees. Localization precision improves for
moderately stronger signals. The correct sky location of signals well above
threshold and originating from nearby galaxies may be observed with ~50% or
better probability with a few pointings of wide-field telescopes.Comment: 17 pages. This version (v2) includes two tables and 1 section not
included in v1. Accepted for publication in Astronomy & Astrophysic
Search for gravitational waves associated with the InterPlanetary Network short gamma ray bursts
We outline the scientific motivation behind a search for gravitational waves
associated with short gamma ray bursts detected by the InterPlanetary Network
(IPN) during LIGO's fifth science run and Virgo's first science run. The IPN
localisation of short gamma ray bursts is limited to extended error boxes of
different shapes and sizes and a search on these error boxes poses a series of
challenges for data analysis. We will discuss these challenges and outline the
methods to optimise the search over these error boxes.Comment: Methods paper; Proceedings for Eduardo Amaldi 9 Conference on
Gravitational Waves, July 2011, Cardiff, U
Gravitational Waves From Known Pulsars: Results From The Initial Detector Era
We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom
A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007
We present the results of the first search for gravitational wave bursts
associated with high energy neutrinos. Together, these messengers could reveal
new, hidden sources that are not observed by conventional photon astronomy,
particularly at high energy. Our search uses neutrinos detected by the
underwater neutrino telescope ANTARES in its 5 line configuration during the
period January - September 2007, which coincided with the fifth and first
science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed
for candidate gravitational-wave signals coincident in time and direction with
the neutrino events. No significant coincident events were observed. We place
limits on the density of joint high energy neutrino - gravitational wave
emission events in the local universe, and compare them with densities of
merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at
http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access
area to figures, tables at
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000
Swift follow-up observations of candidate gravitational-wave transient events
We present the first multi-wavelength follow-up observations of two candidate
gravitational-wave (GW) transient events recorded by LIGO and Virgo in their
2009-2010 science run. The events were selected with low latency by the network
of GW detectors and their candidate sky locations were observed by the Swift
observatory. Image transient detection was used to analyze the collected
electromagnetic data, which were found to be consistent with background.
Off-line analysis of the GW data alone has also established that the selected
GW events show no evidence of an astrophysical origin; one of them is
consistent with background and the other one was a test, part of a "blind
injection challenge". With this work we demonstrate the feasibility of rapid
follow-ups of GW transients and establish the sensitivity improvement joint
electromagnetic and GW observations could bring. This is a first step toward an
electromagnetic follow-up program in the regime of routine detections with the
advanced GW instruments expected within this decade. In that regime
multi-wavelength observations will play a significant role in completing the
astrophysical identification of GW sources. We present the methods and results
from this first combined analysis and discuss its implications in terms of
sensitivity for the present and future instruments.Comment: Submitted for publication 2012 May 25, accepted 2012 October 25,
published 2012 November 21, in ApJS, 203, 28 (
http://stacks.iop.org/0067-0049/203/28 ); 14 pages, 3 figures, 6 tables;
LIGO-P1100038; Science summary at
http://www.ligo.org/science/Publication-S6LVSwift/index.php ; Public access
area to figures, tables at
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p110003
Directional limits on persistent gravitational waves using LIGO S5 science data
The gravitational-wave (GW) sky may include nearby pointlike sources as well
as astrophysical and cosmological stochastic backgrounds. Since the relative
strength and angular distribution of the many possible sources of GWs are not
well constrained, searches for GW signals must be performed in a
model-independent way. To that end we perform two directional searches for
persistent GWs using data from the LIGO S5 science run: one optimized for
pointlike sources and one for arbitrary extended sources. The latter result is
the first of its kind. Finding no evidence to support the detection of GWs, we
present 90% confidence level (CL) upper-limit maps of GW strain power with
typical values between 2-20x10^-50 strain^2 Hz^-1 and 5-35x10^-49 strain^2
Hz^-1 sr^-1 for pointlike and extended sources respectively. The limits on
pointlike sources constitute a factor of 30 improvement over the previous best
limits. We also set 90% CL limits on the narrow-band root-mean-square GW strain
from interesting targets including Sco X-1, SN1987A and the Galactic Center as
low as ~7x10^-25 in the most sensitive frequency range near 160 Hz. These
limits are the most constraining to date and constitute a factor of 5
improvement over the previous best limits.Comment: 10 pages, 4 figure
First Low-Latency LIGO+Virgo Search for Binary Inspirals and their Electromagnetic Counterparts
Aims. The detection and measurement of gravitational-waves from coalescing
neutron-star binary systems is an important science goal for ground-based
gravitational-wave detectors. In addition to emitting gravitational-waves at
frequencies that span the most sensitive bands of the LIGO and Virgo detectors,
these sources are also amongst the most likely to produce an electromagnetic
counterpart to the gravitational-wave emission. A joint detection of the
gravitational-wave and electromagnetic signals would provide a powerful new
probe for astronomy.
Methods. During the period between September 19 and October 20, 2010, the
first low-latency search for gravitational-waves from binary inspirals in LIGO
and Virgo data was conducted. The resulting triggers were sent to
electromagnetic observatories for followup. We describe the generation and
processing of the low-latency gravitational-wave triggers. The results of the
electromagnetic image analysis will be described elsewhere.
Results. Over the course of the science run, three gravitational-wave
triggers passed all of the low-latency selection cuts. Of these, one was
followed up by several of our observational partners. Analysis of the
gravitational-wave data leads to an estimated false alarm rate of once every
6.4 days, falling far short of the requirement for a detection based solely on
gravitational-wave data.Comment: 13 pages, 13 figures. For a repository of data used in the
publication, go to:
http://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=P1100065 Also see the
announcement for this paper on ligo.org at:
http://www.ligo.org/science/Publication-S6CBCLowLatency
Disgust trumps lust:women’s disgust and attraction towards men is unaffected by sexual arousal
Mating is a double-edged sword. It can have great adaptive benefits, but also high costs, depending on the mate. Disgust is an avoidance reaction that serves the function of discouraging costly mating decisions, for example if the risk of pathogen transmission is high. It should, however, be temporarily inhibited in order to enable potentially adaptive mating. We therefore tested the hypothesis that sexual arousal inhibits disgust if a partner is attractive, but not if he is unattractive or shows signs of disease. In an online experiment, women rated their disgust towards anticipated behaviors with men depicted on photographs. Participants did so in a sexually aroused state and in a control state. The faces varied in attractiveness and the presence of disease cues (blemishes). We found that disease cues and attractiveness, but not sexual arousal, influenced disgust. The results suggest that women feel disgust at sexual contact with unattractive or diseased men independently of their sexual arousal
- …
