216 research outputs found

    Modulation Of The Catalytic Activity Of Porphyrins By Lipid- And Surfactant-containing Nanostructures

    Get PDF
    The structural factors modulating porphyrin activity encompass pyrrole and equatorial ligands, as well as the central metal and the number and structure of their axial ligands. Of equal importance is the microenvironment provided by apoproteins, solvents and membranes. Porphyrins are often used to construct supramolecular structures with different applications. The modulation of activity of the porphyrins has been frequently achieved by mimicking nature, i.e., by the provision of different microenvironments for these molecules. The association of porphyrins to surfactant- and lipid-containing nanostructures has changed the activity of these compounds to mimic different enzymes such as SOD, cytochrome P450, peroxidases and others. In determined conditions, the reactive forms of the porphyrins are high-valence states of oxo-metal-π cations and oxo-metal produced by the reaction with peroxides and peracids. The modulation of porphyrin activity by surfactant- and lipid-containing nanostructures has also been achieved for hemeproteins, as the lipid nanostructures affect the conformation of proteins. ©2011 Sociedade Brasileira de Química.22916211633Drain, C.M., Varotto, A., Radivojevic, I., (2009) Chem. Rev., 109, p. 1630Aida, T., Inoue, S., (2000) The Porphyrin Handbook, , Kadish, K., M. Smith, K., M. Guillard R., eds.Academic Press: San Diego ch. 42Ponka, P., (1999) Am. J. Med. Sci., 318, p. 241Da Silva, D.C., De Freitas-Silva, G., Do Nascimento, E., Rebouças, J.S., Barbeira, P.J., De Carvalho, M.E., Idemori, Y.M., (2008) J. Inorg. Biochem., 102, p. 1932Bochot, C., Bartoli, J.F., Frapart, Y., Dansette, P.M., Mansuy, D., Battioni, P., (2007) J. Mol. Catal. A.: Chem., 263, p. 200Alkordi, M.H., Liu, Y.L., Larsen, R.W., Eubank, J.F., Eddaoudi, M., (2008) J. Am. Chem. Soc., 130, p. 12639Suijkerbuijk, B., Schamhart, D.J., Kooijman, H., Spek, A.L., Van Koten, G., Gebbink, R., (2010) Dalton Trans., 39, p. 6198Groves, J.T., Nemo, T.E., (1983) J. Am. Chem. Soc., 10, p. 5786Drain, C.M., Smeureanu, G., Patel, S., Gong, X.C., Garno, J.A., (2006) New. J. Chem., 30, p. 1834Wang, Y.T., Jin, W.J., (2008) Spectrochim. Acta, Part A., 70, p. 871Komatsu, T., Moritake, W., Nakagawa, A., Tsuchida, E., (2002) Chem. - Eur. J., 8, p. 5469Nagami, H., Umakoshi, H., Shimanouchi, T., Kuboi, R., (2004) Biochem. Eng. J., 21, p. 221Szoka, F., Papahadjopoulos, D., (1980) Annu. Rev. Biophys. Bioeng., 9, p. 467Atkin, R., Craig, V.S.J., Wanless, E.J., Biggs, S., (2003) Adv. Colloid Interface Sci., 103, p. 219Grassert, I., Schinkowski, K., Vollhardt, D., Oehme, G., (1998) Chirality, 10, p. 754Hait, S.K., Moulik, S.P., (2001) J. Surfactants Deterg., 4, p. 303Glick, J., Santoyo, G., Casey, P.J., (1996) J. Biol. Chem., 271, p. 2949Maldotti, A., Andreotti, L., Molinari, A., Varani, G., Cerichelli, G., Chiarini, M., (2001) Green Chem., 3, p. 42Batrakova, E.V., Kabanov, A.V., (2008) J. Controlled Release, 130, p. 98Bangham, A.D., Standish, M.M., Watkins, J.C., (1965) J. Mol. Biol., 13, p. 238Johnson, S.M., Bangham, A.D., Hill, M.W., Korn, E.D., (1971) Biochim. Biophys. Acta. Biomembr., 233, p. 820Papahadj, D., Watkins, J.C., (1967) Biochim. Biophys. Acta, Biomembr., 135, p. 639Abramson, M.B., Katzman, R., Gregor, H.P., (1964) J. Biol. Chem., 239, p. 70Hauser, H.O., (1971) Biochem. Biophys. Res. Commun., 45, p. 1049Huang, C.H., (1969) Biochemistry, 8, p. 344Saunders, L., Gammack, D., Perrin, J., (1962) J. Pharm. Pharmacol., 14, p. 567Tien, H.T., (1974) Theory and Practice, , 1th ed.Bilayer Lipid Membranes (BLM): Marcel Dekker: New YorkRazin, S., (1972) Biochim. Biophys. Acta, Biomembr., 265, p. 241Korenbrot, J.I., (1977) Annu. Rev. Physiol., 39, p. 19Batzri, S., Korn, E.D., (1973) Biochim. Biophys. Acta, Biomembr., 298, p. 1015Deamer, D., Bangham, A.D., (1976) Biochim. Biophys. Acta, Biomembr., 443, p. 629Szoka, F., Papahadjopoulos, D., (1978) Proc. Natl. Acad. Sci. U. S. A., 75, p. 4194Mishra, P.P., Bhatnagar, J., Datta, A., (2005) J. Phys. Chem. B., 109, p. 24225Pessoto, F.S., Inada, N.M., Nepomuceno, M.D., Ruggiero, A.C., Nascimento, O.R., Vercesi, A.E., Nantes, I.L., (2009) Chem. Biol. Interact., 181, p. 400Steinbeck, C.A., Hedin, N., Chmelka, B.F., (2004) Langmuir, 20, p. 10399Vanesch, J.H., Feiters, M.C., Peters, A.M., Nolte, R.J.M., (1994) J. Phys. Chem., 98, p. 5541Barber, D.C., Freitagbeeston, R.A., Whitten, D.G., (1991) J. Phys. Chem., 95, p. 4074Maiti, N.C., Mazumdar, S., Periasamy, N.J., (1998) J. Porphyrins Phthalocyanines, 2, p. 369Schmehl, R.H., Whitten, D.G., (1981) J. Phys. Chem., 85, p. 3473Perrin, M.H., (1973) J. Chem. Phys., 59, p. 2090Zhou, X.T., Ji, H.B., (2010) Chem. Eng. J., 156, p. 411Monnereau, C., Ramos, P.H., Deutman, A.B.C., Elemans, J., Nolte, R.J.M., Rowan, A.E., (2010) J. Am. Chem. Soc., 132, p. 1529Merlau, M.L., Grande, W.J., Nguyen, S.T., Hupp, J.T., (2000) J. Mol. Catal. A: Chem., 156, p. 79Anzenbacher, P., Kral, V., Jursikova, K., Gunterova, J., Kasal, A., (1997) J. Mol. Catal. A: Chem., 118, p. 63Zhao, Y.C., Xiang, Y.Z., Pu, L., Yang, M., Yu, X.Q., (2006) Appl. Catal. A, 301, p. 176Zhou, X.T., Tang, Q.H., Ji, H.B., (2009) Tetrahedron Lett., 50, p. 6601Monfared, H.H., Aghapoor, V., Ghorbanloo, M., Mayer, P., (2010) Appl. Catal. A, 372, p. 209Heijnen, J.H.M., De Bruijn, V.G., Van Den Broeke, L.J.P., Keurentjes, J.T.F., (2003) Chem. Eng. Process., 42, p. 223Santos, A.C., Luz, R.A.S., Ferreira, L.G.F., Santos-Júnior, J.R., Silva, W.C., (2010) Quim. Nova, 33, p. 539Zhou, Y.B., Ryu, E.H., Zhao, Y., Woo, L.K., (2007) Organometallics, 26, p. 358Nantes, I.L., Crespilho, F.N., Mugnol, K.C.U., Chaves, J.C.A., Luz, R.A.S., Nascimento, O.R., Pinto, S.M.S., (2010) Circular Dichroism: Theory and Spectroscopy, , Rodgers D. S., ed.Nova Science Publishers: New York ch. 8Travascio, P., Sen, D., Bennet, A.J., (2006) Can. J. Chem., 84, p. 613Omodeo-Sale, F., Monti, D., Olliaro, P., Taramelli, D.P., (2001) Biochem. Pharmacol., 61, p. 999Ishigure, S., Mitsui, T., Ito, S., Kondo, Y., Kawabe, S., Kondo Dewa M, T., Mino, H., Nango, M., (2010) Langmuir, 26, p. 7774Umakoshi, H., Morimoto, K., Ohama, Y., Nagami, H., Shimanouchi, T., Kuboi, R., (2008) Langmuir, 24, p. 4451Prieto, T., Marcon, R.O., Prado, F.M., Caires, A.C.F., Di Mascio, P., Brochsztain, S., Nascimento, O.R., Nantes, I.L., (2006) J. Phys.Chem., 8, p. 1963Mugnol, K.C.U., Ando, R.A., Nagayasu, R.Y., Faljoni-Alario, A., Brochsztain, S., Santos, P.S., Nascimento, R.O., Nantes, I.L., (2008) Biophys. J., 94, p. 4066Nagatomo, H., Matsushita, Y., Sugamoto, K., Matsui, T., (2003) Tetrahedron: Asymmetry, 14, p. 2339Cantonetti, V., Monti, D., Venanzi, M., Bombelli, C., Ceccacci, F., Mancini, G., (2004) Tetrahedron: Asymmetry, 15, p. 1969Hiraka, K., Kanehisa, M., Tamai, M., Asayama, S., Nagaoka, S., Oyaizu, K., Yuasa, M., Kawakami, H., (2008) Colloids Surf. B, 67, p. 54Yuasa, M., Oyaizu, K., Horiuchi, A., Ogata, A., Hatsugai, T., Yamaguchi, A., Kawakami, H., (2004) Mol. Pharm., 1, p. 387Aron, J., Baldwin, D.A., Marques, H.M., Pratt, J.M., Adams, P.A., (1986) J. Inorg. Biochem., 27, p. 227Wang, J.S., Vanwart, H.E., (1989) J. Phys. Chem., 93, p. 7925Munro, O.Q., Marques, H.M., (1996) Inorg. Chem., 35, p. 3752Prieto, T., Nascimento, O.R., Tersariol, I.L.S., Faljoni-Alario, A., Nantes, I.L., (2004) J. Phys. Chem. B, 108, p. 11124Prieto, T., Nantes, I.L., Nascimento, O.R., (2004) Prog. Colloid Polym. Sci., 128, p. 1Makarska, M., Radzki, S., Legendziewicz, J., (2002) J. Alloys Compd., 341, p. 233Riposati, A., Prieto, T., Shida, C.S., Nantes, I.L., Nascimento, O.R., (2006) J. Inorg. Biochem., 100, p. 226Claiborne, A., Fridovich, I., (1979) J. Biol. Chem., 254, p. 4245Hiner, A.N.P., Ruiz, J.H., Lopez, J.N.R., Canovas, F.G., Brisset, N.C., Smith, A.T., Arnao, M.B., Acosta, M., (2002) J. Biol. Chem., 277, p. 26879Primus, J.L., Grunenwald, S., Hagedoorn, P.L., Albrecht-Gary, A.M., Mandon, D., Veeger, C.T., (2002) J. Am. Chem. Soc., 124, p. 1214Demontellano, P.R.O., (1992) Annu. Rev. Pharmacol. Toxicol., 32, p. 89Savenkova, M.I., Kuo, J.M., De Montellano, P.R.O., (1998) Biochemistry, 37, p. 10828Smith, A.T., Veitch, N.C., (1998) Curr. Opin. Chem. Biol., 2, p. 269Prieto, T., Mugnol, K.C.U., Araujo, J.C., Sousa, F.L., Soares, V.A., Cilento, G., Nantes, I.L., (2007) Catalysis and Photochemistry in Heterogeneous Media, , Nantes I. L.Brochesztain, S. eds.Research Signpost: Kerala ch. 1Zucchi, M.R., Nascimento, O.R., Faljoni-Alario, A., Prieto, T., Nantes, I.L., (2003) Biochem. J., 370, p. 671Kinnunen, P.K.J., (1992) Chem. Phys. Lipids, 63, p. 251Kawai, C., Prado, F.M., Nunes, G.L.C., Di Mascio, P., Carmona-Ribeiro, A.M., Nantes, I.L., (2005) J. Biol. Chem., 280, p. 34709Araujo, J.C., Prieto, T., Prado, F.M., Trindade, F.J., Nunes, G.L.C., Dos Santos, J.G., Di Masco, P., Nantes, I.L., (2007) J. Nanosci. Nanotechnol., 7, p. 3643Estevam, M.L., Nascimento, O.R., Baptista, M.S., Di Mascio, P., Prado, F.M., Faljoni-Alario, A., Zucchi, M.D., Nantes, I.L., (2004) J. Biol. Chem., 279, p. 39214Kawai, C., Nantes, I.L., Baptista, M.D.S., (2010) FEBS J., 277, p. 224Nantes, I.L., Faljoni-Alario, A., Vercesi, A.E., Santos, K.E., Bechara, E.J.H., (1998) Free Radic. Biol. Med., 25, p. 54

    Total parasite biomass but not peripheral parasitaemia is associated with endothelial and haematological perturbations in Plasmodium vivax patients

    Get PDF
    Plasmodium vivax is the major cause of human malaria in the Americas. How P. vivax infection can lead to poor clinical outcomes, despite low peripheral parasitaemia remains a matter of intense debate. Estimation of total P. vivax biomass based on circulating markers indicates existence of a predominant parasite population outside of circulation. In this study we investigate associations between both peripheral and total parasite biomass and host response in vivax malaria. We analysed parasite and host signatures in a cohort of uncomplicated vivax malaria patients from Manaus, Brazil, combining clinical and parasite parameters, multiplexed analysis of host responses and ex vivo assays. Patterns of clinical features, parasite burden and host signatures measured in plasma across the patient cohort were highly heterogenous. Further data deconvolution revealed two patient clusters, here termed Vivaxlow and Vivaxhigh. These patient subgroups were defined based on differences in total parasite biomass but not peripheral parasitaemia. Overall Vivaxlow patients clustered with healthy donors and Vivaxhigh patients showed more profound alterations in haematological parameters, endothelial cell (EC) activation and glycocalyx breakdown and levels of cytokines regulating different haematopoiesis pathways compared to Vivaxlow. Vivaxhigh patients presented more severe thrombocytopenia and lymphopenia, along with enrichment of neutrophils in the peripheral blood and increased neutrophil-to-lymphocyte ratio (NLCR). When patients' signatures were combined, high association of total parasite biomass with a subset of markers of EC activation, thrombocytopenia and lymphopenia severity was observed. Finally, machine learning models defined a combination of host parameters measured in the circulation that could predict the extent of parasite infection outside of circulation. Altogether, our data show that total parasite biomass is a better predictor of perturbations in host homeostasis in P. vivax patients than peripheral parasitaemia. This supports the emerging paradigm of a P. vivax tissue reservoir, in particular in the hematopoietic niche of bone marrow and spleen

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Measurement of the inclusive isolated prompt photon cross-section in pp collisions at sqrt(s)= 7 TeV using 35 pb-1 of ATLAS data

    Get PDF
    A measurement of the differential cross-section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy sqrt(s) = 7 TeV is presented. The measurement covers the pseudorapidity ranges |eta|<1.37 and 1.52<=|eta|<2.37 in the transverse energy range 45<=E_T<400GeV. The results are based on an integrated luminosity of 35 pb-1, collected with the ATLAS detector at the LHC. The yields of the signal photons are measured using a data-driven technique, based on the observed distribution of the hadronic energy in a narrow cone around the photon candidate and the photon selection criteria. The results are compared with next-to-leading order perturbative QCD calculations and found to be in good agreement over four orders of magnitude in cross-section.Comment: 7 pages plus author list (18 pages total), 2 figures, 4 tables, final version published in Physics Letters

    Measurement of D*+/- meson production in jets from pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    This paper reports a measurement of D*+/- meson production in jets from proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV at the CERN Large Hadron Collider. The measurement is based on a data sample recorded with the ATLAS detector with an integrated luminosity of 0.30 pb^-1 for jets with transverse momentum between 25 and 70 GeV in the pseudorapidity range |eta| < 2.5. D*+/- mesons found in jets are fully reconstructed in the decay chain: D*+ -> D0pi+, D0 -> K-pi+, and its charge conjugate. The production rate is found to be N(D*+/-)/N(jet) = 0.025 +/- 0.001(stat.) +/- 0.004(syst.) for D*+/- mesons that carry a fraction z of the jet momentum in the range 0.3 < z < 1. Monte Carlo predictions fail to describe the data at small values of z, and this is most marked at low jet transverse momentum.Comment: 10 pages plus author list (22 pages total), 5 figures, 1 table, matches published version in Physical Review
    corecore