1,006 research outputs found
f(R) Gravities, Killing Spinor Equations, "BPS" Domain Walls and Cosmology
We derive the condition on f(R) gravities that admit Killing spinor equations
and construct explicit such examples. The Killing spinor equations can be used
to reduce the fourth-order differential equations of motion to the first order
for both the domain wall and FLRW cosmological solutions. We obtain exact "BPS"
domain walls that describe the smooth Randall-Sundrum II, AdS wormholes and the
RG flow from IR to UV. We also obtain exact smooth cosmological solutions that
describe the evolution from an inflationary starting point with a larger
cosmological constant to an ever-expanding universe with a smaller cosmological
constant. In addition, We find exact smooth solutions of pre-big bang models,
bouncing or crunching universes. An important feature is that the scalar
curvature R of all these metrics is varying rather than a constant. Another
intriguing feature is that there are two different f(R) gravities that give
rise to the same "BPS" solution. We also study linearized f(R) gravities in
(A)dS vacua.Comment: 37 pages, discussion on gravity trapping in RSII modified, typos
corrected, further comments and references added; version to appear in JHE
Gauge symmetry and W-algebra in higher derivative systems
The problem of gauge symmetry in higher derivative Lagrangian systems is
discussed from a Hamiltonian point of view. The number of independent gauge
parameters is shown to be in general {\it{less}} than the number of independent
primary first class constraints, thereby distinguishing it from conventional
first order systems. Different models have been considered as illustrative
examples. In particular we show a direct connection between the gauge symmetry
and the W-algebra for the rigid relativistic particle.Comment: 1+22 pages, 1 figure, LaTeX, v2; title changed, considerably expanded
version with new results, to appear in JHE
On the nonequilibrium entropy of large and small systems
Thermodynamics makes definite predictions about the thermal behavior of
macroscopic systems in and out of equilibrium. Statistical mechanics aims to
derive this behavior from the dynamics and statistics of the atoms and
molecules making up these systems. A key element in this derivation is the
large number of microscopic degrees of freedom of macroscopic systems.
Therefore, the extension of thermodynamic concepts, such as entropy, to small
(nano) systems raises many questions. Here we shall reexamine various
definitions of entropy for nonequilibrium systems, large and small. These
include thermodynamic (hydrodynamic), Boltzmann, and Gibbs-Shannon entropies.
We shall argue that, despite its common use, the last is not an appropriate
physical entropy for such systems, either isolated or in contact with thermal
reservoirs: physical entropies should depend on the microstate of the system,
not on a subjective probability distribution. To square this point of view with
experimental results of Bechhoefer we shall argue that the Gibbs-Shannon
entropy of a nano particle in a thermal fluid should be interpreted as the
Boltzmann entropy of a dilute gas of Brownian particles in the fluid
An interferometric gravitational wave detector as a quantum-gravity apparatus
As a consequence of the extreme precision of the measurements it performs, an
interferometric gravitational wave detector is a macroscopic apparatus for
which quantum effects are not negligible. I observe that this property can be
exploited to probe some aspects of the interplay between Quantum Mechanics and
Gravity.Comment: LaTex, 7 pages. Version accepted for publication in Nature. Under
press embargo until publicatio
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
f(R) theories
Over the past decade, f(R) theories have been extensively studied as one of
the simplest modifications to General Relativity. In this article we review
various applications of f(R) theories to cosmology and gravity - such as
inflation, dark energy, local gravity constraints, cosmological perturbations,
and spherically symmetric solutions in weak and strong gravitational
backgrounds. We present a number of ways to distinguish those theories from
General Relativity observationally and experimentally. We also discuss the
extension to other modified gravity theories such as Brans-Dicke theory and
Gauss-Bonnet gravity, and address models that can satisfy both cosmological and
local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in
Relativity, Published version, Comments are welcom
The role of diet in the aetiopathogenesis of inflammatory bowel disease
Crohn’s disease and ulcerative colitis, collectively known as IBD, are chronic inflammatory disorders of the gastrointestinal tract. Although the aetiopathogenesis of IBD is largely unknown, it is widely thought that diet has a crucial role in the development and progression of IBD. Indeed, epidemiological and genetic association studies have identified a number of promising dietary and genetic risk factors for IBD. These preliminary studies have led to major interest in investigating the complex interaction between diet, host genetics, the gut microbiota and immune function in the pathogenesis of IBD. In this Review, we discuss the recent epidemiological, gene–environment interaction, microbiome and animal studies that have explored the relationship between diet and the risk of IBD. In addition, we highlight the limitations of these prior studies, in part by explaining their contradictory findings, and review future directions
Current European Labyrinthula zosterae Are Not Virulent and Modulate Seagrass (Zostera marina) Defense Gene Expression
Pro- and eukaryotic microbes associated with multi-cellular organisms are receiving increasing attention as a driving factor in ecosystems. Endophytes in plants can change host performance by altering nutrient uptake, secondary metabolite production or defense mechanisms. Recent studies detected widespread prevalence of Labyrinthula zosterae in European Zostera marina meadows, a protist that allegedly caused a massive amphi-Atlantic seagrass die-off event in the 1930's, while showing only limited virulence today. As a limiting factor for pathogenicity, we investigated genotype×genotype interactions of host and pathogen from different regions (10–100 km-scale) through reciprocal infection. Although the endophyte rapidly infected Z. marina, we found little evidence that Z. marina was negatively impacted by L. zosterae. Instead Z. marina showed enhanced leaf growth and kept endophyte abundance low. Moreover, we found almost no interaction of protist×eelgrass-origin on different parameters of L. zosterae virulence/Z. marina performance, and also no increase in mortality after experimental infection. In a target gene approach, we identified a significant down-regulation in the expression of 6/11 genes from the defense cascade of Z. marina after real-time quantitative PCR, revealing strong immune modulation of the host's defense by a potential parasite for the first time in a marine plant. Nevertheless, one gene involved in phenol synthesis was strongly up-regulated, indicating that Z. marina plants were probably able to control the level of infection. There was no change in expression in a general stress indicator gene (HSP70). Mean L. zosterae abundances decreased below 10% after 16 days of experimental runtime. We conclude that under non-stress conditions L. zosterae infection in the study region is not associated with substantial virulence
- …
