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Abstract

Pro- and eukaryotic microbes associated with multi-cellular organisms are receiving increasing attention as a driving factor
in ecosystems. Endophytes in plants can change host performance by altering nutrient uptake, secondary metabolite
production or defense mechanisms. Recent studies detected widespread prevalence of Labyrinthula zosterae in European
Zostera marina meadows, a protist that allegedly caused a massive amphi-Atlantic seagrass die-off event in the 1930’s, while
showing only limited virulence today. As a limiting factor for pathogenicity, we investigated genotype6genotype
interactions of host and pathogen from different regions (10–100 km-scale) through reciprocal infection. Although the
endophyte rapidly infected Z. marina, we found little evidence that Z. marina was negatively impacted by L. zosterae.
Instead Z. marina showed enhanced leaf growth and kept endophyte abundance low. Moreover, we found almost no
interaction of protist6eelgrass-origin on different parameters of L. zosterae virulence/Z. marina performance, and also no
increase in mortality after experimental infection. In a target gene approach, we identified a significant down-regulation in
the expression of 6/11 genes from the defense cascade of Z. marina after real-time quantitative PCR, revealing strong
immune modulation of the host’s defense by a potential parasite for the first time in a marine plant. Nevertheless, one gene
involved in phenol synthesis was strongly up-regulated, indicating that Z. marina plants were probably able to control the
level of infection. There was no change in expression in a general stress indicator gene (HSP70). Mean L. zosterae
abundances decreased below 10% after 16 days of experimental runtime. We conclude that under non-stress conditions L.
zosterae infection in the study region is not associated with substantial virulence.
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Introduction

In the recent past, microorganisms, associated with multi-

cellular organisms, have been receiving increasing attention as a

driving factor in ecosystems (e.g. [1]). Endophytes in plants can

change host growth and shoot production [2] by altering nutrient

uptake [3], secondary metabolite production or defense mecha-

nisms [4]. Moreover, endophytes can be parasites and thereby

play a crucial role in ecosystems by controlling the dynamics of

host populations, by regulating host abundances and, thus, by

contributing to ecosystem stability [5]. In the marine realm,

emerging diseases caused by microorganisms, have been recog-

nized as causes for species extinction, regime shifts or altered

community structure [6,7]. How two species interact, whether the

host benefits or is degraded by the microbe depends mainly on two

factors: the effectiveness of the defense reaction of the host and the

pathogenicity of the microorganism.

In this study we investigated the interaction of the most

abundant seagrass in the northern hemisphere [8], Zostera marina,

with the endophytic protist Labyrinthula zosterae, which caused the

world’s largest reported seagrass die-off event. Seagrasses form one

of the most valuable coastal ecosystems on earth [9]. They are

marine flowering plants, which form huge meadows, providing

food, shelter and settlement substrate for many organisms. Being

the foundation species of one of the most productive ecosystems

[10], they sequester 15% of the total marine consumed CO2 and

represent thereby an important sink and storage of atmospheric

CO2 [11]. Seagrass meadows contribute to coastal protection [12],

play a key role in nutrient cycling [13] and add to water clarity by

reducing current velocity and by increasing sedimentation [14].

Seagrasses are sensitive to reduced light availability due to

eutrophication [15] or increasing water turbidity [16]. Since

anthropogenic impact on this sensitive ecosystem is still increasing,

seagrass populations are declining worldwide [16,17].

In the 1930’s, the so called ‘wasting disease’ affected Z. marina

populations along the Atlantic coasts of North America, the

European Atlantic, the North and Wadden Sea and the Baltic Sea,

affecting eelgrass populations in France, Great Britain, The
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Netherlands, Germany and Denmark (for review see [18,19,20]).

During the ‘wasting disease’ epidemic more than 90% of the

Atlantic coast eelgrass populations disappeared [19] after repeat-

edly developing expanding black or brown lesions on the leaf

blades that finally resulted in a disintegration of the rhizome and

death of the plants. The eelgrass loss had a tremendous impact on

the eelgrass associated fauna (reviewed by [19]). Recovery of the Z.

marina populations was slow [21] and in some areas eelgrass never

recovered, e.g. the western Wadden Sea [22]. In the 1980’s, a

reoccurrence of the ‘wasting disease’ was reported from New

Hampshire and Maine [21,23,24].

Already in the 1930’s, Renn [25] proposed a marine slime

mold, Labyrinthula sp., as the agent of the ‘wasting disease’. In 1988

Muehlstein et al. [26] confirmed, by applying Koch’s postulate,

Labyrinthula zosterae to be the causative agent of the wasting disease.

Recent studies detected widespread prevalence of the protist

Labyrinthula zosterae in European eelgrass (Zostera marina) meadows

[27], demonstrating that L. zosterae is still an integral part of the

eelgrass ecosystem. The L. zosterae-strains currently occurring in

northern European eelgrass meadows apparently cause neither

massive disease symptoms nor die-offs. The primary objective of

this study was to better understand the Z.marina – L. zosterae

interaction, by gaining information about the host’s defense

mechanisms as well as local co-adaptations of both, host and

microbe. This insight may also enable us to explain the actual

absence of the disease and to predict the risk of future lethal

epidemics in seagrass beds.

Nothing is known about pathogen defense in Z. marina

specifically, but in general, flowering plant defense reactions

against pathogens are evolutionary conserved [28] and can be

understood as a cascade with different layers (Fig. 1). First, physical

(e.g. wax cuticle or cell walls) and biochemical barriers (e.g.

antimicrobial enzymes or secondary metabolites) inhibit pathogen

growth [29]. One important group of secondary metabolites are

phenolic acids and their derivates, which have various functions,

for examples antioxidant capacity [30] and antimicrobial function

[31]. Accumulation of phenolic compounds probably also plays a

role in the interaction between Z. marina and L. zosterae, since

higher concentrations of phenolic acids, mainly caffeic acid, were

detected in infected as compared to healthy plants [32].

Secondly, receptors at the cell surface recognize slow evolving

pathogen (or microbe) associated molecular patterns (PAMPs = -

MAMPs, e.g. bacterial flagellin or fungal chitin), which induce a

basal defense [33]. However, some pathogens can overcome this

defense induction by inhibiting the pathway through release of

effector proteins into the host tissue. As a counter response, most

plants demonstrate cytoplasmic or membrane-localized receptors

(so called resistance-genes or R-genes), that bind directly to

pathogen-released effectors or to damaged host cell fragments

[34]. Upon binding to the receptor, reactions are triggered that

can induce a hypersensitive response (HR) and the expression of a

set of pathogenesis-related proteins [35]. HR is mediated by

metacaspases and other factors, such as hydrogen peroxide

concentration. In HR, the infected cell undergoes a programmed

cell death (PCD or apoptosis), which limits the reproduction and

spread of the pathogen within the host tissue [36]. As a final level

of defense, pathogenesis-related genes (PR-genes) are expressed

such as chitinases, defensins or beta-1,3-glucanase, which work

against pathogens in various ways [37].

During induction and regulation of plant defense reactions,

plant hormones spread information about infection throughout the

plant, which might lead to systemic resistance. In general, Salicylic

acid (SA) seems to be the dominant hormone in biotrophic

pathogen interaction, while Jasmonicacid (JA) and Ethylene (ET)

have been found to be involved more frequently in necrotic

interaction [38].

In regard to the lack of virulence of today’s L. zosterae infection,

several explanations are possible. First, the genotypes of the protist

currently present may generally show low or no virulence. This

was tested by experimentally inoculating naı̈ve Z. marina raised

from seeds with L. zosterae. Second, plant genotypes may be

adapted to local protist genotypes (in particular in historical

wasting disease areas) preventing virulence effects. Hence, we

investigated the host – pathogen co-adaptation in different

populations on a regional spatial scale by applying a reciprocal

infection design to test infectiousness and pathogenicity. Third, we

characterized the defense reaction of Z. marina after infection with

L. zosterae by measuring the gene expression of 11 defense related

genes that were identified using Z. marina EST library sequences

[39] via comparison of gene models of terrestrial model plants at

different time intervals post infection. We choose genes from

different levels of the defense cascade (Fig. 1). We aimed to answer

the following research questions:

1. How virulent is Labyrinthula zosterae in the study area (measured

as lesion development, leaf growth and leaf production by

Zostera marina; Experiment I: experimental inoculation of the

eelgrass hosts with L. zosterae)?

2. Are there differences in infectiousness and virulence between

Zostera marina hosts and Labyrinthula zosterae endophytes with

different origin, which may explain local persistence of host

and pathogen (Experiment I: Reciprocal inoculation of eelgrass

hosts and endophyte with L. zosterae, both with different origin)?

3. Does infection of Zostera marina by Labyrinthula zosterae lead to

enhanced expression of defense related genes (Experiment II:

Defense gene expression in Zostera marina)?

Materials and Methods

Seed collection, germination and cultivation of Zostera
marina

In order to raise L. zosterae naı̈ve plants for experiment I, we

collected about 100 flowering shoots with seeds from each of three

subtidal populations along the north-western German Baltic

(Wackerballig in Flensburg Fjord, Kiekut in Eckernförde Bay

and Strande in Kiel Fjord) in July 2010 (Table 1). No specific

permissions were required for these locations/activities, since

GEOMAR research activities along the coasts and shelf areas in

the Baltic Sea are permitted when adhering to the general

guidelines for the operation of research vessels. Our field studies

did not involve endangered or protected species. In October 2010,

another 100 flowering shoots were collected from a subtidal

population of Zostera marina in List on the island of Sylt in the

German Wadden Sea (Table 1). Sampling at Ellenbogen Creek

was permitted by the nature conservation authority and Mr.

Diedrichsen, the owner of this private property. Collected

flowering shoots were immediately transported in water containers

to GEOMAR Kiel and stored floating in mesocosms, in filtered

seawater at 21uC and with the respective sampling site’s salinity

until seeds were ripe.

Ripe seeds were stored at 5uC for stratification (September–

November 2010: Baltic seeds; November 2010–January 2011:

Wadden Sea seeds). Subsequently, Zostera marina seeds were sown

in plastic aquaria filled with ambient sediment and submerged in

mesocosms with ambient sea water (15 psu) at 10u–12uC and with

12 hours light (,600 mE m22 s21).
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When seedlings reached a size of 10–15 cm in March–April

2011, 6 seedlings were transferred to each plastic aquarium

holding sediment of 25 cm thickness, submerged in

506506100 cm aerated containers with a 1:1 mixture of Kiel

Fjord Sea and North Sea water (25 psu). Each seedling received

,0.02 g Nitrate and ,0.009 g Phosphate (Plantacote Mix 4M,

Manna, Germany). Temperature was raised to 17uC and a light:

dark regime of 15 : 9 was applied to mimic early summer

conditions. One third of the water was exchanged every week.

Zostera marina seeds for experiment II were collected in an

eelgrass population close to Strande (Table 1) in June 2011. No

specific permissions were required for these locations/activities

(see above). The procedure was identical to the first experiment.

Seeds germinated between December 2011 and February 2012. In

March 2012, Z. marina seedlings were planted into aquaria.

Temperatures were continuously increased from 12uC in March to

18uC in August. The light period was extended from 12 hours in

March to 16 hours in August.

Labyrinthula zosterae isolation and cultivation
For isolation of L. zosterae for experiment I, we sampled leaves

from vegetative Zostera marina shoots at the seed sampling sites List,

Kiekut and Falckenstein. Labyrinthula zosterae was isolated and

cultured on seawater-agar-medium as previously described [18].

In preparation of the infection procedure, we autoclaved medical

gauze compresses (Lohman und Rauscher, Germany). Five

Figure 1. Defense mechanism of Zostera marina.
doi:10.1371/journal.pone.0092448.g001

Table 1. Sampling sites of Zostera marina.

Area Location Geograph. Coordinates Sampling date Salinity (psu) Sampled

Experiment 1

Sylt, Wadden Sea, List N 55.0410 October 2010 .30 Flowering shoots, leaves

Germany E 08.4130 August 2011 for isolation of L. zosterae

Flensburg Fjprd, Wackerballig* N 54.7557 July 2010 15–17 Flowering shoots, leaves

Germany E 09.8668 August 2011 for isolation of L. zosterae

Eckernförde Bay, Kiekut N 54.4483 July 2010 15–17 Flowering shoots, leaves

Germany E 08.7106 August 2011 for isolation of L. zosterae

Kiel Fjord, Strande N 54.4330 July 2010 15–17 Flowering shoots

Germany E 10.1699

Kiel Fjord, Falckenstein N 54.3954 August 2011 15–17 Leaves for isolation of L.

Germany E 10.1935 zosterae

Experiment II

Kiel Fjord, Strande N 54.4330 June 2011 15–17 Flowering shoots, leaves

Germany E 10.1699 July 2012 for isolation of L. zosterae

*Leaves for isolation of L. zosterae were harvested from plants infected in experiment I and kept in mesocosms until March 2012.
doi:10.1371/journal.pone.0092448.t001
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squares of gauze (1.561.5 cm) were placed in a circle on each

seawatermedium plate. We then inoculated the centre of these

plates with L. zosterae cells, resulting in an identical distance of all

gauze pieces to the inoculated L. zosterae culture. After 5 days the

gauzes were overgrown by L. zosterae. Four different strains of L.

zosterae were used for each original site (see below). L. zosterae DNA

from one gauze piece of each culture was extracted (see below) and

subjected to real-time quantitative PCR analysis (rt-QPCR, see

below) for the determination of inoculation concentration of L.

zosterae. Inoculation concentration was 15,31063,240 L. zosterae

cells/square of gauze.

In experiment II the isolation of L. zosterae cultures for infection

was identical to experiment I. Here, we sampled Z. marina leaves

from Strande (Table 1) in July 2012 and received three different L.

zosterae strains. The gauze bandages used for inoculation were

rectangular and smaller (1.560.75 cm, 6,0176853 L. zosterae cells/

square of gauze) in this case.

Experiment I: Reciprocal infection of host and endophyte
with different origin

Experimental design. Before the start of the experiment on

August 25th, 2011, 48 plastic aquaria (15625 cm) were filled with

10 cm of ambient, sterilized sediment. Six Zostera marina seedlings

from one of the four parental sites (experimental factor 1, Fig. 2)

were planted in each aquarium, resulting in 12 aquaria per

parental site. Each seedling received slow-release fertilizer (see

above) again and was given six weeks for settlement. After that,

one aquarium from each parental side was placed in each one of

12 mesocosms. The latter were filled with 600 L of a mixture of

Kiel Fjord and North Sea water resulting in a salinity of 25 psu at

a temperature of 18–19uC. During the experiment 1/3 of the

water was exchanged every week and temperature and salinity

were controlled every other day. The light period was 16 hours.

For infection, the second and third oldest leaf of each Z. marina

shoot was wrapped with a gauzed bandage containing Labyrinthula

zosterae from different isolation sites (second experimental factor,

Fig. 2, Table 1) for 24 hrs. All plants in aquaria of the same

mesocosm received bandages from the same isolation site,

resulting in three mesocosms with four aquaria and 72 plants

per isolation site. Plants in the remaining three mesocosms were

not infected. The second and third oldest leaf of three of the six

plants was wrapped with non-infected bandage to control for an

effect of the bandage itself. After one day all bandages were

removed and infection success was determined by the appearance

of lesions on the leaf surface.

The size of the lesions was determined by estimating the fraction

of the leaf that had turned black in five classes (0%, .0–10%,

.10–25%, .25–50%, .50–75%, .75–100%). We assessed

lesion size one, two, three, six and nine days after infection on

the second oldest leaf. Lesions on the third oldest leaf were

estimated one, two, three, six days after infection. At day three the

leaf 3rd was harvested and dried for L. zosterae determination by rt-

QPCR. Furthermore, we measured leaf length of the third oldest,

second oldest and youngest leaf at the start of the experiment and

at day six. After harvesting the third oldest leaf, leaf length of the

second oldest (as far as it was present and not naturally shed),

youngest and all newly appearing leaves was measured after 10, 17

and 32 days. On day 32 after infection, the first leaf that appeared

post infection was harvested and analyzed by rt-QPCR for L.

zosterae infection.

DNA-extraction and real-time quantitative PCR assay (rt-

QPCR). After sampling, the harvested leaves were air dried.

Approximately 2–4 mg dried leaf material from 2–3 cm above

and below the region where infective gauze bandage had been

placed was first ground in a ball mill (Retsch, Germany) at

maximal speed (468 min.). DNA extractions of L. zosterae were

performed with an Invisorb spin tissue mini kit (Invitek, Berlin,

Germany) following the manufacturer’s instructions. To enhance

extraction efficiency and to ensure that even low amounts of target

DNA were carried through the filter absorption steps, 1 mL

(containing ,500 ng) of UltraPure salmon sperm DNA solution

(Invitrogen, Life Technologies, USA) was added to each extraction

to saturate silica columns with DNA. Target DNA was purified

using a one-step PCR inhibitor removal kit (Zymo Research,

USA).

To determine Labyrinthula zosterae cell number, we followed a

TaqMan based rt-QPCR assay as described in Bockelmann et al.

[18] with a fluorescently-labeled ITS probe.

In one reaction we used 10 mL TaqMan universal Master Mix

(Applied Biosystems, now Life Technologies) in a 20 mL reaction

volume: 2 mL 1:10 diluted template DNA, 2.4 mL (40.8 nM) of the

two primers, 2.4 mL Milli-Q H2O and 0.8 mL probe (50 nM),

respectively. The thermo-cycling program on a Step-One QPCR

machine was 2 min at 50uC and 10 min at 95uC, followed by 48

cycles at 95uC for 15 s and 1 min at 60uC.

Data analysis and statistics. Lesion size was estimated as

percent data and had to be arc sine transformed to achieve

variance homogeneity.

Cell number~sin^{1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lesion size=100

p

Growth rates for individual leaves were calculated as

(Shoot lengtht2{Shoot lengtht1)

Number of days between measurement

Growth rates and leaf production (number of new leaves produced

post infection) data were log transformed.

All samples analyzed by rt-QPCR were tested in triplicate and

the standard deviation of triplicates never exceeded 0.5 units of

cycle threshold (Ct). Only CT values ,39 were considered.

Standard curves using preparations of Labyrinthula zosterae with

known cell numbers attained correlation coefficients between

r2 = 0.97 and 0.99 and a detection limit of ,0.01 cells. Abundance

as the number of L. zosterae cells in each milligram (dry weight)

Zostera marina sample was calculated from the linear regression of

the standard curve (Standard cell number against mean Standard

Ct calculated from all rt-QPCR reactions; 150 cells = 22.493

Ct60.060 SE, 15 cells = 27.080 Ct60.080 SE, 0.5cells = 32.215

Ct60.125 SE).

Cell number~({azb � (de log(Ct)))=w � 10

where a = intercept, b = slope and w = sample dry weight. Cell

number has to be multiplied by 10 because the samples were

diluted 1:10 prior rt-QPCR.

Statistical analysis was based on a general linear model and

done by 2-way analysis of variance (implemented in software JMP

9, SAS Institute, USA). ‘‘Parental site’’ of Zostera marina (Kiel Fjord,

Eckernförde Bight, Flensburg Fjord and Sylt) and ‘‘Isolation site’’

of Labyrinthula zosterae (Kiel Fjord, Eckernförde Fjord, Sylt and no

infection) were independent factors in the model. The control

treatments were analyzed as a forth level of the factor isolation site.

Dependent factors were ‘‘lesion size’’, ‘‘growth rate/day’’, ‘‘leaf

production’’ and ‘‘L. zosterae cells/mg Z. marina dry weight’’.

Table 2 summarizes the results of the statistical analysis.

Labyrinthula Non-Virulent Modulate Zostera Defense
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Experiment II: Defense gene expression in Zostera marina
The objective of the second experiment was to analyze the

Zostera marina defense reaction in a target-gene approach. In a pilot

experiment, we first tested the abundance of L. zosterae within Z.

marina leaves after different inoculation times in order to

investigate how much time the protist needs to enter an eelgrass

leaf. Zostera marina and Labyrinthula zosterae were both collected from

an eelgrass population in the Eckernförde Bay (Table 1). The

plants were either cultured from seeds (see above) or sampled in

February 2012, when L. zosterae prevalence in the population

showed to be minimal [18]. Labyrinthula zosterae cultures were

isolated from Zostera marina plants, which had been infected in

experiment I and had been cultivated in our mesocosm facility

thenceforth. On April 24th and 25th the 2nd and 3rd youngest

leaves of each plant were infected and sampled. We tested

incubations of 10, 20, 40, 80, 160 and 320 minutes. To control for

accidental infection prior to the experimental infection treatment,

we took samples from all plants before infection treatment. Cell

numbers of Labyrinthula zosterae per mg Zostera marina dry weight

were obtained and tested in the same way as described for

experiment I (see above). This pilot study revealed that the first

plants were infected after 10 minutes. After 5:20 hrs, cell numbers

started to increase. By combining these results with the cell

numbers from experiment I, we found a maximum after 3 days

and decreasing cell numbers thereafter (Fig. 3).

Experimental design. When the experiment started on

August 15th, 2012, plants were 6 to 9 month old. Single plants

were transplanted to 6 L plastic buckets filled with a 10 cm layer

of sieved sandy sediment (mesh size 1000 mm) one week before the

start of the experiment. To improve growth of Z. marina in the new

sediment, each plant was fertilized as described above. Temper-

ature was 19uC, salinity 15–17 psu. Nine buckets were placed in

each of 6 mesocosms filled with ,600 L of seawater. In three of

the six mesocosms plants were infected by using gauze bandages

overgrown by L. zosterae (see above, Fig. 2). Plants were inoculated

for different time intervals: either 0.5 hrs, 5 hrs or 50 hrs

(experimental factor).Three mesocosms served as controls, in

which plant leaves were wrapped with non-infected gauze

bandages stored in seawater medium plates.

RNA extraction and reverse transcription. After incuba-

tion, a ,4 cm leaf blade including the infection site as well as 1 cm

above and below the infection site was cut and wiped with sodium

hypochlorite (0.5%) to sterilize the surface. Plant tissue samples

were immediately frozen in liquid nitrogen and ground with a

mortar and pestle. To ensure a rapid RNA isolation, samples were

taken in two time series shortly after each other.

We isolated RNA with the Invitrap Spin Plant RNA Mini kit

(Stratec Molecular, Germany). Homogenized samples were kept

15–30 min in RP-lysis buffer under constant shaking. We then

followed the instruction by the company. To determine the

concentration of the RNA, we used a spectrophotometer

(NanodropND-1000 from peQLab, Germany). RNA was tran-

scribed to cDNA using QuantiTectReverse Transcription Kit

(Qiagen, USA). Approximately 80 ng of RNA was inserted per

transcription reaction. The kit contained a DNA wipe-out step to

prevent gDNA contamination. As a control, we took a non-reverse

transcript sample to test later in the rt-QPCR for gDNA

contamination.

Selection of genes and primer design. Using the rt-QPCR

assay, we tested 11 genes of which five genes have been previously

described [40,41]. These genes are encoding a heat shock protein

and four ROS scavenging enzymes, which are known to be

Figure 2. Experimental design and setup of experiment I and II.
doi:10.1371/journal.pone.0092448.g002
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sensitive to biotic as well as abiotic stress. Six additional genes were

identified based on homology search with known gene models

from rice and Arabidopsis using the expressed sequence tags (EST)

library database Dr. ZOMPO [39]. We chose genes that were

associated with the plant pathogen defense cascade (Table 3) and

made sure that these were homologous and complete when

compared to other model plants using alignments. The house-

keeping gene eIF4A served as reference gene for later normali-

zation of rt-QPCR results [40]. Using the software PerlPrimer

[42], primers were designed and tested for identical sequences

against the EST library of Z. marina. Primer efficiencies (PE) were

tested using a 5 fold dilution series (1:10–1:810) in three replicates.

Efficiency E was .1.7 and R2 0.87–0.99. PE was calculated

according to Rasmussen et al. [41]:

E~10^(-1=slope)

Real-time quantitative PCR-Assay (rt-QPCR). Rt-QPCR

was conducted in a StepOne Plus (Applied Biosystems, USA). In

one reaction we used 10 mL SYBR green fast master mix (Applied

Biosystems, USA) as provided by the company, 0.8 mL of primer

reverse (final concentration 200 nM), 0.8 mL primer forward (final

concentration 200 nm (0.4 mL in case of EDS-5 and Met), 4.4 ml

HPLC H2O (4.8 mL in case of EDS-5 and Met) and 4 mL of

cDNA sample, 1:20 diluted. Cycling temperatures were 95uC
3 min (once), 95uC 20 sec, 60uC 20 sec, 72u 30 sec, 42 cycles. On

each plate we used a balanced design of infected and control

samples to correct for plate variation. Furthermore each plate

contained the reference gene and a negative control as well as a

no-template and a no-reverse transcript control (taken after

genomic DNA digestion to control for genomic DNA contamina-

tion) sample.

Data analysis and statistics. All samples were tested in

triplicate and the standard deviation of triplicates never exceeded

0.5 units of cycle threshold (Ct).

To obtain a relative measure for transcript amounts, we

calculated 2 D Ct values (1). Fold changes in gene expression

were calculated according to equation (2) and (3).

{DCt~CtTarget Gene{Ct Reference Gene ð1Þ

DDCt~{DCt(treated sample){({DCt(control sample)) ð2Þ

Fold change~2DDCt ð3Þ

Statistical analysis was based on 2 DCt values in a general

linear model with 2 DCt as response variable and Infection and

Incubation Time (0.5, 5 or 50 hours) as independent variables. For

Table 2. Experiment 1: Statistical analysis of differences in Labyrinthula zosterae abundance, lesion size, growth rate and leaf
production after inoculation of Zostera marina with L. zosterae compared with uninoculated plants.

Response variable Factor df SS F/x2 P Residual SS

L. zosterae abundance* Z. marina origin 3 6.39 0.09

L. zosterae origin 3 46.47 ,0.0001

Lesion size leaf 31 Z. marina origin 3 0.32 3.81 0.01 6.74

L. zosterae origin 3 9.77 119.27 ,0.0001

Z.mori..6L.z. ori 9 0.28 1.15 0.33

Lesion size leaf 21 Z. marina origin 3 0.45 2.49 0.06 14.56

L. zosterae origin 3 11.67 63.81 ,0.000

Z.mori..6L.z. ori 9 0.77 1.41 0.18

Growth rate Z.m. leaf 2` Inoculated vs. not inoculated 1 0.13 0.15 0.697 106.33

Growth rate Z.m. leaf 1` Inoculated vs. not inoculated 1 1.44 5.40 0.021 61.70

Growth rate Z.m. leaf 03 Inoculated vs. not inoculated 1 6.57 9.10 0.003 159.62

Leaves produced post infection` Inoculated vs. not inoculated 1 0.87 16.64 0.0003 15.47

* = Wilcoxon Test,
1 = lesion size 3 days post inoculation, 2-way-ANOVA,
` = 1-way-ANOVA.
doi:10.1371/journal.pone.0092448.t002

Figure 3. Abundance of Labyrinthula zosterae cells per mg
Zostera marina leaf sample (dry weight) depending on inocu-
lation time during experimental L. zosterae infection. Results are
partly from experiment I and II, means with standard error bars.
doi:10.1371/journal.pone.0092448.g003
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statistical differences between incubation time levels, we conducted

a Tukey post-hoc test. All statistical tests used here, were

performed with the software R (R Development Core Team

[43]). An overview of the results of statistical analysis is given in

Table 4.

Results

Experiment I: Reciprocal infection of host and endophyte
with different origin

Across all experimental factors, lesion development after

24 hours indicated that infection had been successful in 187 out

of 210 experimental Zostera marina plants (89%) inoculated with

Labyrinthula zosterae. After 48 hours, 18% of the inoculated 3rd

oldest leaves were covered by lesions. Three days post inoculation

(after 72 hours), lesion size had doubled to 36%. Lesion

progression was slightly slower on the 2nd oldest leaf, where only

24% of the leaf surface was black after 3 days. However, lesions

continuously increased thereafter resulting in a lesion cover of

36% after 7, 46% after 9 and 60% after 16 days. After 10 days,

black spots (661%) appeared on the youngest leaf (at inoculation),

increasing to 1061% after 16 days. Mortality of Z. marina during

the experiment was very low and similar to the natural mortality in

our experimental set-up. Four out of 262 plants in total (3.1%)

died by the end of the experiment after 16 days (3.1%), resulting in

249 plants left.

Infected plants grew better than uninfected controls and showed

enhanced growth of the younger leaves that were either uninfected

or formed after the infection (Fig. 4a, Table 2). Furthermore

infected plants produced fewer new leaves across all origins

(Fig. 4b, Table 2). We found no genotype6genotype (host

origin6protist origin) interactions on any of the response variables.

However, there were some main effects of the factor genotype on

lesion development.

Infected Z. marina plants from different origin did not differ in L.

zosterae abundance (L. zosterae cells/mg Z. marina dry weight,

Fig. 5a), leaf production or leaf growth. Origin of the L. zosterae

culture also did not lead to significant differences in the parameters

mentioned above (Fig. 5b). Seven days after infection, abundance

of L. zosterae across all origins was reduced to low levels (Fig. 5a, b,

Table 2). However, origin of the L. zosterae culture significantly

impacted lesion progression. Infection with L. zosterae originating

from List eelgrass beds lead to the development of significantly

smaller lesions than Baltic protists (Fig. 6, Table 2).

Experiment II: Defense gene expression in Zostera marina
Contrary to expectations, in 6/11 defense genes, expression

levels were down-regulated upon experimental infection. In

Table 3. Zostera marina genes for gene expression analysis and their predicted function.

Symbol Gene Predicted function Sequence

RPPA NB-ARC domain-containing disease resistance
gene

Immune receptor F 59-GCATCACATCGATATCTGATTCTTT-3

R 59-CTGTGGTAATTTCGACCCATC-39

EDS 5 Enhanced disease suceptibility-5 Signal molecule in SA pathway F 59-GATTGGGATGTGGATATGTTCTC-39

R 59-GGATGTAGAAATGCCGAGGA-39

Met-1 Metacaspase Regulation HR F 59-CATTCCTTGTGCTTGAAAGTC-39

R 59-ACCCTTATAGAATCCCAACGA-39

APX* L-ascorbate peroxidase 2 (cytosolic) ROS regulation F 59-GGTGATTTCTACCAGCTTGC-39

R 59-GATCCGCACCTTGGGTA-39

CAT* Catalase II ROS regulation F 59-ACAAAATTCCGTCCGTCA-39

R 59-GTCCTCAAGGAGTATTGGTCCTC-39

GST* Glutathione S-transferase Detoxification F 59-CATGAATCCATTCGGACAAG-39

R 59-CAGCAAGGTGAGTAAGGTCAG-39

SOD* Superoxide dismutase (mitochondrial) ROS regulation F 59-ATGGGTGTGGCTTGCTTA-39

R 59-ATGCATGCTCCCATACATCT-39

HSP70** Heat shock protein 70 Folding and unfolding of other proteins F 59-ACCGTCTTTGATGCGAAGC-39

R 59-CAGAAAATTGCTTATCTTCTCCCTTA-39

Prot-206 Disease resistance-responsive protein 206 Pathogenesis-related protein F 59-CTCTTCTAGCACGCAATTTGG-39

R 59-CCGAAAATGTCTCCTTCGAG-93

Chit Chitinase 1-like protein Pathogenesis-related protein F 59-AAACAGCCATCAGCACATGA-39

R 59-GTCAGCAAATCCCTGTCCAC-39

CYP73A Trans-cinnamate 4-monooxygenase Enzyme for phenol synthesis F 59-ATATCCACCTTGTCCATTCCC-39

R 59-CTGACTTCCGATACTTGCCT-39

eIF4A* Eukaryotic initiation factor Eukaryotic translation initiation factor F 59-TCTTTCTGCGATGCGAACAG-39

R 59-TGGATGTATCGGCAGAAACG-39

SA = salicylic acid. HR = hypersensitive response. ROS = reactive oxygen species,
* from Winters et al. 2011,
** from Bergmann et al. 20.
doi:10.1371/journal.pone.0092448.t003
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relation to a housekeeping gene eIF4A, 2DCt was significantly

lower in plants infected with L. zosterae for RPPA, APX, GST,

CAT and SOD (Fig. 7, Tab. 4) with levels from 5 to 12-fold. Four

genes showed no difference in expression in comparison to the

housekeeping gene. In contrast, the expression of CYP73A which

is involved in phenol synthesis increased almost 80-fold upon

infection (Fig. 7).

Discussion

To the best of our knowledge, we are one of the first to apply

controlled infection of naı̈ve Z. marina plants raised from seeds (also

see [44]). Our experiments show that infection with present-day L.

zosterae genotypes from North Sea/Baltic Sea in a non- stressful

environment is not associated with the detrimental effects on Z.

marina described for the wasting disease. Mortality levels were low

and not significantly different from controls although the

infectivity of the endophyte was high. Moreover, endophyte

abundances inside plant tissue remained low, and decreased

progressively to low levels after experimental infection, which is

typical for permanent non-lethal infections [45].

The development of lesions covering significant parts of the leaf

was correlated with a significant increase in growth rate of the un-

inoculated younger leaves of the same shoot. Similar plant –

endophyte interactions that lead to increased growth and shoot

production and ultimately result in enhanced survival of the host

as a consequence of infection are known from many terrestrial

grass species [2,46,47,48]. The mechanisms underlying this effect

are for example enhanced nutrient use efficiency for nitrogen and

phosphorus [3,4,49]. Endophyte-infected terrestrial grasses also

exhibit fundamental changes in their secondary metabolites

including a range of alkaloids [50,51] and phenolic compounds

[4,52].Phenols produced by endophyte-infected grasses can not

only be a reaction upon infection but for example be released

through root exudates leading to an increase in P availability [52].

Along these lines, the observed ,80 fold increase in CYP73A

transcript in our study (Fig. 7) could be a direct result of host

manipulation by L. zosterae. In addition to changes in nutrient

availability, indirect beneficial effects for Z. marina could also be a

reduction of herbivory by grazing invertebrates [53,54,55], which

may be induced by enhanced phenolics or by infection with other

microbes such as marine fungi, bacteria or viruses [31].

Furthermore, polyphenols probably control endophyte abundance

by their antimicrobial function [30]. The repellent function of

difference phenolic acids (e.g. caffeic acid) has previously been

shown for Z. marina [32,56,57]. Moreover, phenolic compounds

are also regarded as carbohydrate storage molecules in situations

with nitrogen limitation [58]. Working with the subtropical

seagrass Thalassia testudinum, Steele et al. [59] identified a

correlation between infection with Labyrinthula sp. and the

concentration of phenolic acids in plant tissue. The authors

interpreted this as a consequence of over-accumulation of carbon

resources in the regions above the leaf lesions (across which

assimilate flow was disrupted) rather than an induced defense

reaction by the plant.

The results of our transcription analysis further revealed that

different layers of the host’s pathogen defense were not activated:

Neither R-genes (RPPA), PR-genes (Chitinase and Prot-206),

genes involved in HR (Metacaspase) or signal transduction

through SA (EDS-5) nor ROS scavenger genes (APX, CAT,

SOD, GST) showed enhanced transcription after infection of Z.

marina with L. zosterae. RPPA, Chitinase and all measured ROS

scavenger genes even showed a significant 5–15-fold down-

regulation (Table 4). Moreover, expression of the general stress

indicator gene HSP70 was not changed due to infection (Fig. 7).

This indicates that the plants were not generally stressed upon the

experimental inoculation procedure. This is the first report of any

marine plant that describes such immune modulation of the host

defense by a potential parasite, here a protist.

Many pathogens have evolved mechanisms to manipulate host

response by suppressing defense reaction e.g. through effector

proteins [34,60,61]. One example, where several pathogenesis

related (PR) genes and other genes from the defense cascade are

down-regulated after infection with Phytophthora citricola, is Fagus

sylvatica [62]. The author concluded that P. citricola escaped

recognition by the host, probably by repressing it. How such an

effector might work, has recently been shown by de Jonge et al.

[63]. The LysM effector Ecp6 in Cladosporium fulvum binds Chitin

and prevents thereby a Chitin-triggered host response. Compara-

bly, L. zosterae might release a related effector that oppresses

immune induction in Z. marina. In our study, the tested resistance-

Table 4. Experiment II: Statistical analysis of gene expression in Zostera marina after inoculation with Labyrinthula zosterae
depending on inoculation time.

Infection Inoculation time Infection6incubation time Residual

Gene df SS F p df SS F p df SS F p SS

RPPA* 1 5.25 4.99 ,0.05 2 16.32 7.76 ,0.02 2 17.29 8.22 ,0.02 35.77

EDS-5 1 11.95 1.87 ns 2 33.20 2.59 ns 2 21.50 1.68 ns 211.33

Met 1 11.83 0.99 ns 2 8.63 0.36 ns 2 12.14 0.51 ns 393.00

GST 1 184 0.89 ns 2 6505.80 15.79 ,0.01 2 6040.60 14.66 ,0.01 7210.60

APX 1 1.66 1.24 ns 2 8.23 3.06 ns 2 11.45 4.26 ,0.05 49.73

CAT 1 45.84 12.79 ,0.02 2 41.89 5.85 ,0.02 2 60.30 8.41 ,0.02 129.07

SOD 1 147.75 21.88 ,0.01 2 185.26 13.71 ,0.01 2 213.69 15.82 ,0.01 270.17

HSP70 1 0.82 0.45 ns 2 0.34 2.00 ns 2 0.17 0.05 ns 70.76

Prot-206 1 0.86 0.37 ns 2 22.85 4.99 ,0.05 2 6.55 1.43 ns 93.95

Chit 1 13.41 16.59 ,0.01 2 19.00 11.75 ,0.01 2 21.03 13.01 ,0.01 33.15

CYP73A 1 120.15 21.77 ,0.01 2 81.72 7.40 ,0.02 2 84.70 7.67 ,0.01 215.21

* = See Table 2 for gene descriptions.
doi:10.1371/journal.pone.0092448.t004
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gene immune receptor (RPPA, involved in recognition of

pathogens), as well as the pathogenesis-related proteins (Chitinase

and Prot-206 from the base of the signal cascade) are non-

differential or lower expressed in infected plants, supporting this

theory.

Another indication that the endophyte manipulates the defense

reaction of Z. marina is the down regulation of ROS scavenging

genes (SOD, CAT, APX, GST).ROS is a crucial signal for HR

and other pathogenesis related defense mechanisms and does

therefore play an important role in plant-pathogen interaction

[64]. The observed down regulation of ROS scavenging genes

(SOD, CAT, APX and GST) in L. zosterae infected eelgrass,

especially SOD which catalyzes the dismutation of superoxide

(O22) to oxygen and hydrogen peroxide might imply that the

eelgrass does not recognize L. zosterae. Robb et al. [65] observed a

comparable down regulation of host antioxidant enzymes in the

tolerant interaction between the tomato strain Lycopersicon

esculentum and the pathogen Verticillium dahliae, concluding that no

oxidative burst occurs in these plants. Alternatively, the down-

Figure 4. Growth (a) and leaf production (b) of Zostera marina
leaves 2–4 weeks after experimental infection with Labyrinthula
zosterae. 2nd leaf = inoculated 2nd oldest leaf of each Zostera marina
shoot (growth measured 1st to 2nd week post inoculation), 1st

leaf = youngest leaf at inoculation, not inoculated (growth measured
1st to 4th) week post inoculation), leaf 0 = leaf not yet present at
inoculation, therefore not inoculated (growth measured 3rd to 4th week
post inoculation). * indicates significant differences at p,0.05, ***
indicates significant differences at p,0.01, ns = not significant, means
with standard error bars.
doi:10.1371/journal.pone.0092448.g004

Figure 5. Abundance of Labyrinthula zosterae cells per mg
Zostera marina leaf sample (dry weight) after experimental
inoculation depending on the parental site of Z. marina (a) and
the isolation site of L. zosterae (b). *** indicates significant
differences at p,0.01, ns = not significant, means with standard error
bars.
doi:10.1371/journal.pone.0092448.g005

Figure 6. Spread of lesions on Zostera marina 2nd oldest leaves
of different origin after experimental inoculation with Labyr-
inthula zosterae, *** indicates significant differences at p,0.01,
means with standard error bars.
doi:10.1371/journal.pone.0092448.g006
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regulation of antioxidant enzymes could also result in an

accumulation of reactive oxygen species (ROS) resulting in

damage of plasma- and compartment-membranes and macromol-

ecules [66]. In consequence, plant cell exploitation and symplastic

movement of L. zosterae might be facilitated through non-functional

cell components [67].

Although L. zosterae has no severe impact on Z. marina in our

study area today, it is very well possible that this may change as

shown in many other examples of host-microbe associations

Figure 7. Gene expression of Zostera marina defense genes after experimental infection with Labyrinthula zosterae. I = inoculation
treatment with L. zosterae, NI = no inoculation. Results have been normalized to eIF4A housekeeping gene. 2DCt: log 2 scale. * indicates significant
differences at p,0.5, ns = not significant. RPPA: NB-ARC domain-containing disease resistance receptor gene. EDS-5: Enhanced Disease Susceptibility
5. Met: Metacaspase APX: L-ascorbate peroxidase. GST: Glutathione S-transferase. CAT: catalase II. SOD: superoxide dismutase. HSP70: heat shock
protein 70. Prot-206: Disease resistance-responsive protein 206. Chit: Chitinase. CYP73A: Trans-cinnamate 4-monooxygenase, means with standard
error bars.
doi:10.1371/journal.pone.0092448.g007
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[68,69]. Survival of eelgrass strongly depends on the leaf turn-over

rate: As long as new leaves grow faster than old leaves decay, the

survival is assured. But if growth will be reduced through abiotic or

biotic stressors, leaf mortality may outbalance leaf growth.

Predominant general stressors for Z. marina are increasing water

temperatures in the face of global climate change and reduced

light availability caused by eutrophication [16,17,22,41,70].

Potentially, these stressors could alter the actually non-virulent

relationship between eelgrass and its endophyte towards pathoge-

nicity.

We can conclude that under our non-stressful experimental

conditions, L. zosterae infection in the study region is not associated

with the detrimental effects on Z. marina described for the wasting

disease. Although infectiousness of the endophyte was high, we

found no evidence that Z. marina is negatively impacted by L.

zosterae infection. Instead Z. marina seemed to profit through

enhanced leaf growth and kept endophyte abundance low possibly

as a consequence of high concentrations of phenolic acids. We

hypothesize that under adverse conditions (e.g. high water

temperatures, low light availability) imposing stress on Z. marina,

the protist-plant relationship may become pathogenic.
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