804 research outputs found

    Explaining the Higgs Decays at the LHC with an Extended Electroweak Model

    Get PDF
    We show that the recent discovery of a new boson at the LHC, which we assume to be a Higgs boson, and the observed enhancement in its diphoton decays compared to the SM prediction, can be explained by a new doublet of charged vector bosons from an extended electroweak gauge sector model with SU(3)_C\otimesSU(3)_L\otimesU(1)_X symmetry. Our results show a good agreement between our theoretical expected sensitivity to a 126--125 GeV Higgs boson and the experimental significance observed in the diphoton channel at the 8 TeV LHC. Effects of an invisible decay channel for the Higgs boson are also taken into account, in order to anticipate a possible confirmation of deficits in the branching ratios into ZZ∗ZZ^*, WW∗WW^*, bottom quarks, and tau leptons.Comment: 16 pages, 5 figure

    Compactness and existence results in weighted Sobolev spaces of radial functions. Part II: Existence

    Full text link
    We prove existence and multiplicity results for finite energy solutions to the nonlinear elliptic equation −△u+V(∣x∣)u=g(∣x∣,u)in Ω⊆RN, N≥3, -\triangle u+V\left( \left| x\right| \right) u=g\left( \left| x\right| ,u\right) \quad \textrm{in }\Omega \subseteq \mathbb{R}^{N},\ N\geq 3, where Ω\Omega is a radial domain (bounded or unbounded) and uu satisfies u=0u=0 on ∂Ω\partial \Omega if Ω≠RN\Omega \neq \mathbb{R}^{N} and u→0u\rightarrow 0 as ∣x∣→∞\left| x\right| \rightarrow \infty if Ω\Omega is unbounded. The potential VV may be vanishing or unbounded at zero or at infinity and the nonlinearity gg may be superlinear or sublinear. If gg is sublinear, the case with g(∣⋅∣,0)≠0g\left( \left| \cdot \right| ,0\right) \neq 0 is also considered.Comment: 29 pages, 8 figure

    Extended gaussian ensemble solution and tricritical points of a system with long-range interactions

    Full text link
    The gaussian ensemble and its extended version theoretically play the important role of interpolating ensembles between the microcanonical and the canonical ensembles. Here, the thermodynamic properties yielded by the extended gaussian ensemble (EGE) for the Blume-Capel (BC) model with infinite-range interactions are analyzed. This model presents different predictions for the first-order phase transition line according to the microcanonical and canonical ensembles. From the EGE approach, we explicitly work out the analytical microcanonical solution. Moreover, the general EGE solution allows one to illustrate in details how the stable microcanonical states are continuously recovered as the gaussian parameter γ\gamma is increased. We found out that it is not necessary to take the theoretically expected limit γ→∞\gamma \to \infty to recover the microcanonical states in the region between the canonical and microcanonical tricritical points of the phase diagram. By analyzing the entropy as a function of the magnetization we realize the existence of unaccessible magnetic states as the energy is lowered, leading to a treaking of ergodicity.Comment: 8 pages, 5 eps figures. Title modified, sections rewritten, tricritical point calculations added. To appear in EPJ

    The leading particle effect from light quark fragmentation in charm hadroproduction

    Get PDF
    The asymmetry of D−D^- and D+D^+ meson production in π−N\pi^-N scattering observed by the E791 experiment is a typical phenomenon known as the leading particle effect in charm hadroproducton. We show that the phenomenon can be explained by the effect of light quark fragmentation into charmed hadrons (LQF). Meanwhile, the size of the LQF effect is estimated from data of the E791 experiment. A comparison is made with the estimate of the LQF effect from prompt like-sign dimuon rate in neutrino experiments. The influence of the LQF effect on the measurement of nucleon strange distribution asymmetry from charged current charm production processes is briefly discussed.Comment: 6 latex pages, 1 figure, to appear in EPJ

    Search for the standard model Higgs boson decaying to a bbˉb\bar{b} pair in events with no charged leptons and large missing transverse energy using the full CDF data set

    Get PDF
    We report on a search for the standard model Higgs boson produced in association with a vector boson in the full data set of proton-antiproton collisions at s=1.96\sqrt{s} = 1.96 TeV recorded by the CDF II detector at the Tevatron, corresponding to an integrated luminosity of 9.45 fb−1^{-1}. We consider events having no identified charged lepton, a transverse energy imbalance, and two or three jets, of which at least one is consistent with originating from the decay of a bb quark. We place 95% credibility level upper limits on the production cross section times standard model branching fraction for several mass hypotheses between 90 and 150GeV/c2150 \mathrm{GeV}/c^2. For a Higgs boson mass of 125GeV/c2125 \mathrm{GeV}/c^2, the observed (expected) limit is 6.7 (3.6) times the standard model prediction.Comment: Accepted by Phys. Rev. Let

    Search for the standard model Higgs boson decaying to a bb pair in events with one charged lepton and large missing transverse energy using the full CDF data set

    Get PDF
    We present a search for the standard model Higgs boson produced in association with a W boson in sqrt(s) = 1.96 TeV p-pbar collision data collected with the CDF II detector at the Tevatron corresponding to an integrated luminosity of 9.45 fb-1. In events consistent with the decay of the Higgs boson to a bottom-quark pair and the W boson to an electron or muon and a neutrino, we set 95% credibility level upper limits on the WH production cross section times the H->bb branching ratio as a function of Higgs boson mass. At a Higgs boson mass of 125 GeV/c2 we observe (expect) a limit of 4.9 (2.8) times the standard model value.Comment: Submitted to Phys. Rev. Lett (v2 contains clarifications suggested by PRL

    Search for the standard model Higgs boson decaying to a bb pair in events with two oppositely-charged leptons using the full CDF data set

    Get PDF
    We present a search for the standard model Higgs boson produced in association with a Z boson in data collected with the CDF II detector at the Tevatron, corresponding to an integrated luminosity of 9.45/fb. In events consistent with the decay of the Higgs boson to a bottom-quark pair and the Z boson to electron or muon pairs, we set 95% credibility level upper limits on the ZH production cross section times the H -> bb branching ratio as a function of Higgs boson mass. At a Higgs boson mass of 125 GeV/c^2 we observe (expect) a limit of 7.1 (3.9) times the standard model value.Comment: To be submitted to Phys. Rev. Let

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.Comment: Submitted to Physics Letters
    • …
    corecore