89 research outputs found

    Nature-inspired optimization of hierarchical porous media for catalytic and separation processes

    Get PDF
    Hierarchical materials combining pore sizes of different length scales are highly important for catalysis and separation processes, where optimization of adsorption and transport properties is required. Nature can be an excellent guide to rational design, as it is full of hierarchical structures that are intrinsically scaling, efficient and robust. However, much of the “inspiration” from nature is, at present, empirical; considering the huge design space, we advocate a methodical, fundamental approach based on mechanistic features

    Optimization of mesoporous titanosilicate catalysts for cyclohexene epoxidation via statistically guided synthesis

    Get PDF
    An efficient approach to improve the catalytic activity of titanosilicates is introduced. The Doehlert matrix (DM) statistical model was utilized to probe the synthetic parameters of mesoporous titanosilicate microspheres (MTSM), in order to increase their catalytic activity with a minimal number of experiments. Synthesis optimization was carried out by varying two parameters simultaneously: homogenizing temperature and surfactant weight. Thirteen different MTSM samples were synthesized in two sequential ‘matrices’ according to Doehlert conditions and were used to catalyse the epoxidation of cyclohexene with 'tert'-butyl hydroperoxide. The samples (and the corresponding synthesis conditions) with superior catalytic activity in terms of product yield and selectivity were identified. In addition, this approach revealed the limiting values of each synthesis parameter, beyond which the material becomes catalytically ineffective. This study demonstrates that the DM approach can be broadly used as a powerful and time-efficient tool for investigating the optimal synthesis conditions of heterogeneous catalysts

    Precisely Engineered Supported Gold Clusters as a Stable Catalyst for Propylene Epoxidation

    Get PDF
    Designing a stable and selective catalyst with high H2 utilisation is of pivotal importance for the direct gas-phase epoxidation of propylene. This work describes a facile one-pot methodology to synthesise ligand-stabilised sub-nanometre gold clusters immobilised onto a zeolitic support (TS-1) to engineer a stable Au/TS-1 catalyst. A non-thermal O2 plasma technique is used for the quick removal of ligands with limited increase in particle size. Compared to untreated Au/TS-1 catalysts prepared using the deposition precipitation method, the synthesised catalyst exhibits improved catalytic performance, including 10 times longer lifetime (>20 days), increased PO selectivity and hydrogen efficiency in direct gas phase epoxidation. The structure-stability relationship of the catalyst is illustrated using multiple characterisation techniques, such as XPS, 31P MAS NMR, DR-UV/VIS, HRTEM and TGA. It is hypothesised that the ligands play a guardian role in stabilising the Au particle size, which is vital in this reaction. This strategy is a promising approach towards designing a more stable heterogeneous catalyst

    Gold nanoparticles with tailored size through ligand modification for catalytic applications

    Get PDF
    The active sites of catalysts can be tuned by using appropriate organic moieties. Here, we describe a facile approach to synthesise gold nanoparticles (AuNPs) using various Au(I) precursors. The core size of these AuNPs can be precisely tailored by varying the steric hindrance imposed by bound ligands. An interesting relationship is deduced that correlates the steric hindrance around the metal to the final size of the nanoparticles. The synthesised AuNPs are immobilised onto TS-1 zeolite (Au/TS-1) with minimal change in the final size of the AuNPs. The catalytic performance of Au/TS-1 catalyst is evaluated for the direct gas phase epoxidation of propylene with hydrogen and oxygen, an environmentally friendly route to produce propylene oxide. The results indicate that smaller AuNPs exhibit enhanced catalytic activity and selectivity. Furthermore, this synthetic approach is beneficial when tailored synthesis of gold nanoparticles of specific sizes is required

    A Region of Violent Star Formation in the Irr Galaxy IC 10: Structure and Kinematics of Ionized and Neutral Gas

    Full text link
    We have used observations of the galaxy IC 10 at the 6-m telescope of the Special Astrophysical Observatory with the SCORPIO focal reducer in the Fabry-Perot interferometer mode and with the MPFS spectrograph to study the structure and kinematics of ionized gas in the central region of current intense star formation. Archive VLA 21-cm observations are used to analyze the structure and kinematics of neutral gas in this region. High-velocity wings of the H-alpha and [SII] emission lines were revealed in the inner cavity of the nebula HL 111 and in other parts of the complex of violent star formation. We have discovered local expanding neutral-gas shells around the nebulae HL 111 and HL 106.Comment: 22 pages, 10 figures; accepted in Astronomy Report

    Exploring the Origin and Fate of the Magellanic Stream with Ultraviolet and Optical Absorption

    Full text link
    (Abridged) We present an analysis of ionization and metal enrichment in the Magellanic Stream (MS), the nearest gaseous tidal stream, using HST/STIS and FUSE ultraviolet spectroscopy of two background AGN, NGC 7469 and Mrk 335. For NGC 7469, we include optical spectroscopy from VLT/UVES. In both sightlines the MS is detected in low-ion and high-ion absorption. Toward NGC 7469, we measure a MS oxygen abundance [O/H]_MS=[OI/HI]=-1.00+/-0.05(stat)+/-0.08(syst), supporting the view that the Stream originates in the SMC rather than the LMC. We use CLOUDY to model the low-ion phase of the Stream as a photoionized plasma using the observed Si III/Si II and C III/C II ratios. Toward Mrk 335 this yields an ionization parameter log U between -3.45 and -3.15 and a gas density log (n_H/cm^-3) between -2.51 and -2.21. Toward NGC 7469 we derive sub-solar abundance ratios for [Si/O], [Fe/O], and [Al/O], indicating the presence of dust in the MS. The high-ion column densities are too large to be explained by photoionization, but also cannot be explained by a single-temperature collisional-ionization model (equilibrium or non-equilibrium). This suggests the high-ion plasma is multi-phase. Summing over the low-ion and high-ion phases, we derive conservative lower limits on the ratio N(total H II)/N(H I) of >19 toward NGC 7469 and >330 toward Mrk 335, showing that along these two directions the vast majority of the Stream has been ionized. The presence of warm-hot plasma together with the small-scale structure observed at 21 cm provides evidence for an evaporative interaction with the hot Galactic corona. This scenario, predicted by hydrodynamical simulations, suggests that the fate of the MS will be to replenish the Galactic corona with new plasma, rather than to bring neutral fuel to the disk.Comment: Accepted for publication in ApJ. 18 pages, 7 figures, all in colo

    The Role of Dwarf Galaxy Interactions in Shaping the Magellanic System and Implications for Magellanic Irregulars

    Full text link
    We present a novel pair of numerical models of the interaction history between the Large and Small Magellanic Clouds (LMC and SMC, respectively) and our Milky Way (MW) in light of recent high precision proper motions (Kallivayalil et al. 2006a,b). Given the new velocities, cosmological simulations of structure formation favor a scenario where the Magellanic Clouds (MCs) are currently on their first infall towards our Galaxy (Boylan-Kolchin et al. 2011, Busha et al. 2011). We illustrate here that the observed irregular morphology and internal kinematics of the MCs (in gas and stars) are naturally explained by interactions between the LMC and SMC, rather than gravitational interactions with the MW. This picture further supports a first infall scenario (Besla et a. 2007). In particular, we demonstrate that the Magellanic Stream, a band of HI gas trailing behind the MCs 150 degrees across the sky, can be accounted for by the action of LMC tides on the SMC before the system was accreted by the MW. We further demonstrate that the off-center, warped stellar bar of the LMC and its one-armed spiral, can be naturally explained by a recent direct collision with the SMC. Such structures are key morphological characteristics of a class of galaxies referred to as Magellanic Irregulars (de Vaucouleurs & Freeman 1972), the majority of which are not associated with massive spiral galaxies. We infer that dwarf-dwarf galaxy interactions are important drivers for the morphological evolution of Magellanic Irregulars and can dramatically affect the efficiency of baryon removal from dwarf galaxies via the formation of extended tidal bridges and tails. Such interactions are important not only for the evolution of dwarf galaxies but also have direct consequences for the buildup of baryons in our own MW, as LMC-mass systems are believed to be the dominant building blocks of MW-type halos.Comment: 33 pages, 21 figures, Accepted for publication in MNRAS, Dec 23 201

    Polo-like kinase 1 inhibition as a therapeutic approach to selectively target BRCA1-deficient cancer cells by synthetic lethality induction

    Get PDF
    Purpose: BRCA1 and BRCA2 deficiencies are widespread drivers of human cancers that await the development of targeted therapies. We aimed to identify novel synthetic lethal relationships with therapeutic potential using BRCA-deficient isogenic backgrounds. Experimental Design: We developed a phenotypic screening technology to simultaneously search for synthetic lethal (SL) interactions in BRCA1- and BRCA2-deficient contexts. For validation, we developed chimeric spheroids and a dualtumor xenograft model that allowed the confirmation of SL induction with the concomitant evaluation of undesired cytotoxicity on BRCA-proficient cells. To extend our results using clinical data, we performed retrospective analysis on The Cancer Genome Atlas (TCGA) breast cancer database. Results: The screening of a kinase inhibitors library revealed that Polo-like kinase 1 (PLK1) inhibition triggers strong SL induction in BRCA1-deficient cells. Mechanistically, we found no connection between the SL induced by PLK1 inhibition and PARP inhibitors. Instead, we uncovered that BRCA1 downregulation and PLK1 inhibition lead to aberrant mitotic phenotypes with altered centrosomal duplication and cytokinesis, which severely reduced the clonogenic potential of these cells. The penetrance of PLK1/BRCA1 SL interaction was validated using several isogenic and nonisogenic cellular models, chimeric spheroids, and mice xenografts. Moreover, bioinformatic analysis revealed high-PLK1 expression in BRCA1-deficient tumors, a phenotype that was consistently recapitulated by inducing BRCA1 deficiency in multiple cell lines as well as in BRCA1-mutant cells. Conclusions: We uncovered an unforeseen addiction of BRCA1-deficient cancer cells to PLK1 expression, which provides a new means to exploit the therapeutic potential of PLK1 inhibitors in clinical trials, by generating stratification schemes that consider this molecular trait in patient cohorts.Fil: Carbajosa Gonzålez, Sofía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Pansa, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Paviolo, Natalia Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Castellaro, Andrés Marcos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Andino, Diego Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas. Universidad Católica de Córdoba. Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas; ArgentinaFil: Nigra, Ayelén Denise. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: García, Iris Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Racca, Ana Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Rodriguez, María Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Angiolini, Virginia Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Guantay, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Villafañez, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Federico, Maria Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Rodríguez, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Caputto, Beatriz Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Drewes, Gerard. Cellzome AG; AlemaniaFil: Madauss, Kevin P.. Global Observatory on Health Research and Development; Estados UnidosFil: Gloger, Israel. Global Observatory on Health Research and Development; Estados UnidosFil: Fernandez, Elmer Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas. Universidad Católica de Córdoba. Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas; ArgentinaFil: Gil, German Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Bocco, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Gottifredi, Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Soria, Ramiro Gaston. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentin

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
    • 

    corecore