235 research outputs found

    Diagrammatic method for theory of magnetic and resistive properties of manganites

    Full text link
    Effective field theory of magnetic and resistive properties of manganites with account of strong Hund exchange coupling and electron-phonon interactions has been evolved under the strong Hund coupling condition. In parallel with Lang-Firsov unitary transformation of the zeroth Hamiltonian, we have realized the diagonalization of Hund's Hamiltonian neglecting the upper triplet. The diagram techniques taking into account the quantum spin fluctuations of lower quintet and hole state with spin S=3/2 was developed. The magnetic structure of the ground state and an influence of electron-phonon interaction have been analyzed using the first nonvanishing approximation of perturbation theory. The calculated temperature dependence of resistivity agrees well with experimental data including these obtained in applied magnetic field.Comment: 44 pages, 14 figure

    Reliable Correlation for Liquid–Liquid Equilibria outside the Critical Region

    Get PDF
    A simple model for binary liquid–liquid equilibrium data correlation is explored. The model describes liquid–liquid equilibrium in terms of Henry’s law and unsymmetrically normalized activity coefficients in each phase. A procedure for parameter estimation including an approach to initial guesses, uncertainty analysis of regression results, obtained parameters, and predicted mole fractions has been formulated. The procedure is applied to three cases: hydrocarbons + water, ionic liquids + water, and nitroethane + hydrocarbons. The model has four parameters in the most basic formulation. Depending upon the available data, this number can be extended in a systematic fashion. We compare results of correlation to results obtained with a four-parameter nonrandom two-liquid (NRTL) equation and COSMO-SAC. In general, the new model does nearly as well as NRTL. Advantages of the presented model are a simple form and a parameter set that can be extended in a systematic fashion with an interpretation in terms of thermodynamic properties. The model may be developed further for validation of experimental data

    Elastic Mid-Infrared Light Scattering: a Basis for Microscopy of Large-Scale Electrically Active Defects in Semiconducting Materials

    Full text link
    A method of the mid-IR-laser microscopy has been proposed for the investigation of the large-scale electrically and recombination active defects in semiconductors and non-destructive inspection of semiconductor materials and structures in the industries of microelectronics and photovoltaics. The basis for this development was laid with a wide cycle of the investigations on the low-angle mid-IR-light scattering in semiconductors. The essence of the technical idea was to apply the dark-field method for spatial filtering of the scattered light in the scanning mid-IR-laser microscope. This approach enabled the visualization of large-scale electrically active defects which are the regions enriched with ionized electrically active centers. The photoexcitation of excess carriers within a small volume located in the probe mid-IR-laser beam enabled the visualization of the large-scale recombination-active defects like those revealed in the optical or electron beam induced current methods. Both these methods of the scanning mid-IR-laser microscopy are now introduced in detail in the present paper as well as a summary of techniques used in the standard method of the lowangle mid-IR-light scattering itself. Besides the techniques for direct observations, methods for analyses of the defect composition associated with the mid-IR-laser microscopy are also discussed in the paper.Comment: 44 pages, 13 figures. A good oldi

    Review on computational methods for Lyapunov functions

    Get PDF
    Lyapunov functions are an essential tool in the stability analysis of dynamical systems, both in theory and applications. They provide sufficient conditions for the stability of equilibria or more general invariant sets, as well as for their basin of attraction. The necessity, i.e. the existence of Lyapunov functions, has been studied in converse theorems, however, they do not provide a general method to compute them. Because of their importance in stability analysis, numerous computational construction methods have been developed within the Engineering, Informatics, and Mathematics community. They cover different types of systems such as ordinary differential equations, switched systems, non-smooth systems, discrete-time systems etc., and employ di_erent methods such as series expansion, linear programming, linear matrix inequalities, collocation methods, algebraic methods, set-theoretic methods, and many others. This review brings these different methods together. First, the different types of systems, where Lyapunov functions are used, are briefly discussed. In the main part, the computational methods are presented, ordered by the type of method used to construct a Lyapunov function

    Travel Tales of a Worldwide Weed: Genomic Signatures of Plantago major L. Reveal Distinct Genotypic Groups With Links to Colonial Trade Routes

    Get PDF
    Retracing pathways of historical species introductions is fundamental to understanding the factors involved in the successful colonization and spread, centuries after a species’ establishment in an introduced range. Numerous plants have been introduced to regions outside their native ranges both intentionally and accidentally by European voyagers and early colonists making transoceanic journeys; however, records are scarce to document this. We use genotyping-by-sequencing and genotype-likelihood methods on the selfing, global weed, Plantago major, collected from 50 populations worldwide to investigate how patterns of genomic diversity are distributed among populations of this global weed. Although genomic differentiation among populations is found to be low, we identify six unique genotype groups showing very little sign of admixture and low degree of outcrossing among them. We show that genotype groups are latitudinally restricted, and that more than one successful genotype colonized and spread into the introduced ranges. With the exception of New Zealand, only one genotype group is present in the Southern Hemisphere. Three of the most prevalent genotypes present in the native Eurasian range gave rise to introduced populations in the Americas, Africa, Australia, and New Zealand, which could lend support to the hypothesis that P. major was unknowlingly dispersed by early European colonists. Dispersal of multiple successful genotypes is a likely reason for success. Genomic signatures and phylogeographic methods can provide new perspectives on the drivers behind the historic introductions and the successful colonization of introduced species, contributing to our understanding of the role of genomic variation for successful establishment of introduced taxa.publishedVersio

    Travel Tales of a Worldwide Weed: Genomic Signatures of Plantago major L. Reveal Distinct Genotypic Groups With Links to Colonial Trade Routes

    Get PDF
    Retracing pathways of historical species introductions is fundamental to understanding the factors involved in the successful colonization and spread, centuries after a species’ establishment in an introduced range. Numerous plants have been introduced to regions outside their native ranges both intentionally and accidentally by European voyagers and early colonists making transoceanic journeys; however, records are scarce to document this. We use genotyping-by-sequencing and genotype-likelihood methods on the selfing, global weed, Plantago major, collected from 50 populations worldwide to investigate how patterns of genomic diversity are distributed among populations of this global weed. Although genomic differentiation among populations is found to be low, we identify six unique genotype groups showing very little sign of admixture and low degree of outcrossing among them. We show that genotype groups are latitudinally restricted, and that more than one successful genotype colonized and spread into the introduced ranges. With the exception of New Zealand, only one genotype group is present in the Southern Hemisphere. Three of the most prevalent genotypes present in the native Eurasian range gave rise to introduced populations in the Americas, Africa, Australia, and New Zealand, which could lend support to the hypothesis that P. major was unknowlingly dispersed by early European colonists. Dispersal of multiple successful genotypes is a likely reason for success. Genomic signatures and phylogeographic methods can provide new perspectives on the drivers behind the historic introductions and the successful colonization of introduced species, contributing to our understanding of the role of genomic variation for successful establishment of introduced taxa.info:eu-repo/semantics/publishedVersio

    Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past

    Get PDF
    Simulations of the stratosphere from thirteen coupled chemistry-climate models (CCMs) are evaluated to provide guidance for the interpretation of ozone predictions made by the same CCMs. The focus of the evaluation is on how well the fields and processes that are important for determining the ozone distribution are represented in the simulations of the recent past. The core period of the evaluation is from 1980 to 1999 but long-term trends are compared for an extended period (1960–2004). Comparisons of polar high-latitude temperatures show that most CCMs have only small biases in the Northern Hemisphere in winter and spring, but still have cold biases in the Southern Hemisphere spring below 10 hPa. Most CCMs display the correct stratospheric response of polar temperatures to wave forcing in the Northern, but not in the Southern Hemisphere. Global long-term stratospheric temperature trends are in reasonable agreement with satellite and radiosonde observations. Comparisons of simulations of methane, mean age of air, and propagation of the annual cycle in water vapor show a wide spread in the results, indicating differences in transport. However, for around half the models there is reasonable agreement with observations. In these models the mean age of air and the water vapor tape recorder signal are generally better than reported in previous model intercomparisons. Comparisons of the water vapor and inorganic chlorine (Cly) fields also show a large intermodel spread. Differences in tropical water vapor mixing ratios in the lower stratosphere are primarily related to biases in the simulated tropical tropopause temperatures and not transport. The spread in Cly, which is largest in the polar lower stratosphere, appears to be primarily related to transport differences. In general the amplitude and phase of the annual cycle in total ozone is well simulated apart from the southern high latitudes. Most CCMs show reasonable agreement with observed total ozone trends and variability on a global scale, but a greater spread in the ozone trends in polar regions in spring, especially in the Arctic. In conclusion, despite the wide range of skills in representing different processes assessed here, there is sufficient agreement between the majority of the CCMs and the observations that some confidence can be placed in their predictions
    corecore