927 research outputs found

    Is global ozone recovering?

    Get PDF
    Thanks to the Montreal Protocol, the stratospheric concentrations of ozone-depleting chlorine and bromine have been declining since their peak in the late 1990s. Global ozone has responded: The substantial ozone decline observed since the 1960s ended in the late 1990s. Since then, ozone levels have remained low, but have not declined further. Now general ozone increases and a slow recovery of the ozone layer is expected. The clearest signs of increasing ozone, so far, are seen in the upper stratosphere and for total ozone columns above Antarctica in spring. These two regions had also seen the largest ozone depletions in the past. Total column ozone at most latitudes, however, does not show clear increases yet. This is not unexpected, because the removal of chlorine and bromine from the stratosphere is three to four times slower than their previous increase. Detecting significant increases in total column ozone, therefore, will require much more time than the detection of its previous decline. The search is complicated by variations in ozone that are not caused by declining chlorine or bromine, but are due, e.g., to transport changes in the global Brewer–Dobson circulation. Also, very accurate observations are necessary to detect the expected small increases. Nevertheless, observations and model simulations indicate that the stratosphere is on the path to ozone recovery. This recovery process will take many decades. As chlorine and bromine decline, other factors will become more important. These include climate change and its effects on stratospheric temperatures, changes in the Brewer–Dobson circulation (both due to increasing CO2), increasing emissions of trace gases like N2O, CH4, possibly large future increases of short-lived substances (like CCl2H2) from both natural and anthropogenic sources, and changes in tropospheric ozone

    Symmetry breaking in a condensate of light and its use as a quantum sensor

    Get PDF
    Bose-Einstein condensates (BECs) represent one of the very few manifestations of purely quantum effects on a macroscopic level. Recently, a new type of condensate has been observed—the photon BEC, where light in a dye-filled cavity thermalizes with dye molecules under the influence of an external driving laser, condensing to the lowest-energy mode. Here, we consider medium-induced symmetry breaking in a photon BEC and show that it can be used as a quantum sensor. The introduction of polarizable objects such as chiral molecules lifts the degeneracy between cavity modes of different polarizations. Even a tiny imbalance is imprinted on the condensate polarization, in a “winner-takes-it-all” effect. When used as a sensor for enantiomeric excess, the predicted sensitivity exceeds that of contemporary methods based on circular dichroism. Our results introduce a symmetry-breaking mechanism that is independent of the external pump and demonstrate that the photon BEC can be used for practical purposes

    Global distribution of total ozone and lower stratospheric temperature variations

    No full text
    International audienceThis study gives an overview of interannual variations of total ozone and 50 hPa temperature. It is based on newer and longer records from the 1979 to 2001 Total Ozone Monitoring Spectrometer (TOMS) and Solar Backscatter Ultraviolet (SBUV) instruments, and on US National Center for Environmental Prediction (NCEP) reanalyses. Multiple linear least squares regression is used to attribute variations to various natural and anthropogenic explanatory variables. Usually, maps of total ozone and 50 hPa temperature variations look very similar, reflecting a very close coupling between the two. As a rule of thumb, a 10 Dobson Unit (DU) change in total ozone corresponds to a 1 K change of 50 hPa temperature. Large variations come from the linear trend term, up to -30 DU or -1.5 K/decade, from terms related to polar vortex strength, up to 50 DU or 5 K (typical, minimum to maximum), from tropospheric meteorology, up to 30 DU or 3 K, or from the Quasi-Biennial Oscillation (QBO), up to 25 DU or 2.5 K. The 11-year solar cycle, up to 25 DU or 2.5 K, or El Niño/Southern Oscillation (ENSO), up to 10 DU or 1 K, are contributing smaller variations. Stratospheric aerosol after the 1991 Pinatubo eruption lead to warming up to 3 K at low latitudes and to ozone depletion up to 40 DU at high latitudes. Variations attributed to QBO, polar vortex strength, and to a lesser degree to ENSO, exhibit an inverse correlation between low latitudes and higher latitudes. Variations related to the solar cycle or 400 hPa temperature, however, have the same sign over most of the globe. Variations are usually zonally symmetric at low and mid-latitudes, but asymmetric at high latitudes. There, position and strength of the stratospheric anti-cyclones over the Aleutians and south of Australia appear to vary with the phases of solar cycle, QBO or ENSO

    Experimental Study on Hemp Residues Combustion in a small Scale Stationary Fluidized Bed Combustor

    Get PDF
    Stationary fluidized bed combustion (SFBC-400, diameter 400 mm) has been proved to be an effective way of converting biomass wastages (Hemp residues) into clean energy. It has been received wide research attention in terms of its potential as an economic and environmentally acceptable technology for burning biomass and organic wastages. This paper introduces an experimental study of Hemp residues combustion in a SFBC. Experiments on ranges from 80 to 200 kW combustion test facility capacity show that Hemp residue Combustion temperature must be on ranges from 800 to 825° C. Temperature, volume and the concentrations of exhausted emissions (e.g. CO2, O2, CO, NO, NOX, SO2) are measured by dedicated sensors at different profiles inside the combustor, along its height and in the flue gas duct where the emission is exhausted

    Bias and Drift of the Medium-Range Decadal Climate Prediction System (MiKlip) validated by European Radiosonde Data

    Get PDF
    Quality controlled and homogenized radiosonde observations have been used to validate decadal hindcasts of the MPI-Earth-System-Model for Europe (excl. some Eastern European countries). Simulated temperatures have a cold bias of 1 to 4 K, increasing with height throughout the free troposphere over Europe. This implies that the simulated troposphere is less stable than observed by the radiosondes over Europe. Simulated relative humidity is 10 to 40 % higher than observed. Part of the humidity bias, 10 to 25 % relative humidity, is due to the simulated lower temperature, but the remainder indicates that modelled water vapour pressure is too high in the free troposphere above Europe. After full-field initialization with oceanic state, the atmospheric temperature bias changes over the first couple of years, with a relaxation time of 5 years near the surface (850 hPa) and less than 1 year near the tropopause (200 hPa). Anomaly correlations, mean-square error and logarithmic ensemble spread score indicate small improvements in hindcasted tropospheric temperatures over Europe when going from ocean anomaly initialisation to ocean anomaly initialisation plus full field atmospheric initialisation, and then to full field ocean initialisation plus full field atmospheric initialisation. In the stratosphere, these changes have little effect. For humidity, correlations and skill scores are much poorer, and little can be said about changes over Europe due to different initializations

    Local comparisons of tropospheric ozone: vertical soundings at two neighbouring stations in southern Bavaria

    Get PDF
    In this study ozone profiles of the differential-absorption lidar at Garmisch-Partenkirchen are compared with those of ozone sondes of the Forschungszentrum Jülich and of the Meteorological Observatory Hohenpeißenberg (German Weather Service). The lidar measurements are quality assured by the highly accurate nearby in situ ozone measurements at the Wank (1780 m a.s.l.) and Zugspitze (2962 m a.s.l.) summits and at the Global Atmosphere Watch station Schneefernerhaus (UFS, 2670 m a.s.l.), at distances of 9 km or less from the lidar. The mixing ratios of the lidar agree with those of the monitoring stations, with a standard deviation (SD) of 1.5 ppb, and feature a slight positive offset of 0.6 ± 0.6 ppb (SD) conforming to the known −1.8 % calibration bias of the in situ instruments. Side-by-side soundings of the lidar and electrochemical (ECC) sonde measurements in February 2019 by a team of the Forschungszentrum Jülich shows small positive ozone offsets for the sonde with respect to the lidar and the mountain stations (0.5 to 3.4 ppb). After applying an altitude-independent bias correction to the sonde data an agreement to within just ±2.5 ppb in the troposphere was found, which we regard as the wintertime uncertainty of the lidar. We conclude that the recently published uncertainties of the lidar in the final configuration since 2012 are realistic and rather small for low to moderate ozone concentrations. Comparisons of the lidar with the Hohenpeißenberg routine measurements with Brewer-Mast sondes are more demanding because of the distance of 38 km between the two sites implying significant ozone differences in some layers, particularly in summer. Our comparisons cover the 3 years September 2000 to August 2001, 2009, and 2018. A slight negative average offset (−3.64 ± 3.72 ppb (SD)) of the sondes with respect to the lidar was found. We conclude that most Hohenpeißenberg sonde data could be improved in the troposphere by recalibration with the Zugspitze station data (1978 to 2011 summit, afterwards UFS). This would not only remove the average offset but also greatly reduce the variability of the individual offsets. The comparison for 2009 suggests a careful partial re-evaluation of the lidar measurements between 2007 and 2011 for altitudes above 6 km, where occasionally a negative bias occurred

    Characterisation of Bombyx mori odorant-binding proteins reveals that a general odorant-binding protein discriminates between sex pheromone components

    Get PDF
    In many insect species, odorant-binding proteins (OBPs) are thought to be responsible for the transport of pheromones and other semiochemicals across the sensillum lymph to the olfactory receptors (ORs) within the antennal sensilla. In the silkworm Bombyx mori, the OBPs are subdivided into three main subfamilies; pheromone-binding proteins (PBPs), general odorant-binding proteins (GOBPs) and antennal-binding proteins (ABPs). We used the MotifSearch algorithm to search for genes encoding putative OBPs in B. mori and found 13, many fewer than are found in the genomes of fruit flies and mosquitoes. The 13 genes include seven new ABP-like OBPs as well as the previously identified PBPs (three), GOBPs (two) and ABPx. Quantitative examination of transcript levels showed that BmorPBP1, BmorGOBP1, BmorGOBP2 and BmorABPx are expressed at very high levels in the antennae and so could be involved in olfaction. A new two-phase binding assay, along with other established assays, showed that BmorPBP1, BmorPBP2, BmorGOBP2 and BmorABPx all bind to the B. mori sex pheromone component (10E,12Z)-hexadecadien-1-ol (bombykol). BmorPBP1, BmorPBP2 and BmorABPx also bind the pheromone component (10E,12Z)-hexadecadienal (bombykal) equally well, whereas BmorGOBP2 can discriminate between bombykol and bombykal. X-ray structures show that when bombykol is bound to BmorGOBP2 it adopts a different conformation from that found when it binds to BmorPBP1. Binding to BmorGOBP2 involves hydrogen bonding to Arg110 rather than to Ser56 as found for BmorPBP1

    Inner ear tissue preservation by rapid freezing: improving fixation by high-pressure freezing and hybrid methods

    Get PDF
    In the preservation of tissues in as ‘close to life’ state as possible, rapid freeze fixation has many benefits over conventional chemical fixation. One technique by which rapid freeze-fixation can be achieved, high pressure freezing (HPF), has been shown to enable ice crystal artefact-free freezing and tissue preservation to greater depths (more than 40μm) than other quick-freezing methods. Despite increasingly becoming routine in electron microscopy, the use of HPF for the fixation of inner ear tissue has been limited. Assessment of the quality of preservation showed routine HPF techniques were suitable for preparation of inner ear tissues in a variety of species. Good preservation throughout the depth of sensory epithelia was achievable. Comparison to chemically fixed tissue indicated that fresh frozen preparations exhibited overall superior structural preservation of cells. However, HPF fixation caused characteristic artefacts in stereocilia that suggested poor quality freezing of the actin bundles. The hybrid technique of pre-fixation and high pressure freezing was shown to produce cellular preservation throughout the tissue, similar to that seen in HPF alone. Pre-fixation HPF produced consistent high quality preservation of stereociliary actin bundles. Optimising the preparation of samples with minimal artefact formation allows analysis of the links between ultrastructure and function in inner ear tissues
    corecore