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Abstract

A bulk heterojunction of porous silicon and eumelanin, where the columnar pores of porous silicon are filled with
eumelanin, is proposed as a new organic-inorganic hybrid material for photovoltaic applications. The addition of
eumelanin, whose absorption in the near infrared region is significantly higher than porous silicon, should greatly
enhance the light absorption capabilities of the empty porous silicon matrix, which are very low in the low energy
side of the visible spectral range (from about 600 nm downwards). The experimental results show that indeed the
photocarrier collection efficiency at longer wavelengths in eumelanin-impregnated samples is clearly higher with
respect to empty porous silicon matrices.
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Background
The relevance of solar power in the renewable energy
field is constantly increasing due to its ready availability
and to the fact that the available amount exceeds by sev-
eral orders of magnitude the needs of the human race.
The search for new materials with better performances
than standard Si-based solar cells is also constantly in-
creasing. Organic materials [1] emerged as a very attract-
ive solution for this scope, their lower efficiencies with
respect to inorganic materials being compensated by
lower fabrication costs and higher flexibility. Hybrid
materials have also been investigated as a way to com-
bine the low production costs of organic materials with
the high efficiency of inorganic materials [2-8].
Among the adopted strategies for new materials, inter-

face geometry often plays a major role in the collection
of photogenerated carriers, and bulk heterojunctions
[3,9-12] - intimately mixing the two junction materials
while keeping them separate in a ‘fractal like’ high-
surface interface - are a very promising design for solar
cells. This concept was introduced in the mid 1990s for
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organic solar cells [5,13-15] to shorten the exciton travel
distance from the photon absorption site towards the
charge-separating interface and then both to reduce the
spontaneous recombination and to increase the collec-
tion efficiency. The very large interfacial area available
for charge separation processes also increases the carrier
collection efficiency.
We investigate here a new hybrid material for photovol-

taic applications composed by n-type porous silicon (PSi)
and eumelanin, a natural pigment featuring relatively high
electrical conductivity [16] and believed to rely mainly on
proton-based conduction [16-18]. Porous Si is a large spe-
cific area material, whose properties depend on Si sub-
strate doping and on fabrication parameters [19]. Its
application span ranges from biosensor [19] to drug deliv-
ery [20] and optoelectronics [21]. In the photovoltaic field,
PSi has been considered up to now mainly as an antire-
flection coating for crystalline Si [22], and there are very
few studies about its photovoltaic properties [23,24]. Por-
ous Si-organic hybrids have recently been considered [25],
but literature reports are mainly on amorphous [26] or
crystalline [27,28] Si. An exception are the interesting
results by Nahor et al. [25] reporting a study of a PSi-
organic hybrid material realized using conjugate polymers
for solar cells, which highlight the potential of PSi-based
bulk heterojunctions.
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Figure 1 Schematic of PSi fabrication equipment. The working
electrode is the crystalline Si wafer.

29µm

Bulk Si
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Figure 2 Cross-section SEM image of a PSi sample for thickness
measurement. The porous layer and the underlying bulk Si are
indicated. The PSi external surface and the interface with the bulk Si
substrate are indicated with the upper and lower orange lines,
respectively. The measured thickness value is also shown.
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Melanins are a class of natural pigments responsible
for the colorations of human skin and hair [29] in the
range from light, yellow-reddish (pheomelanins) and
dark, brownish black (eumelanins). Their unique status
among natural pigments is due to their socioeconomic
and biomedical relevance, encompassing racial pigmen-
tation, skin photoprotection, sun tanning, and pigmen-
tary disorders. Moreover, they display a quite unusual set
of physicochemical properties such as broadband mono-
tonic absorption in the ultraviolet-visible [18].
These features have suggested the possible use of syn-

thetic (artificial) eumelanins in the development of a new
generation of bioinspired electrically active devices [30-
32]. More recently, eumelanin biopolymers have also
been proposed for optoelectronic and photovoltaic appli-
cations [33,34]. Due to their wide absorbance covering
the whole visible light spectrum, eumelanins behave as
very efficient photoreceptors [31].
As a part of a large project aimed to assess the scope

of melanins and melanin-like materials for the develop-
ment of novel hybrid functional architectures [35,36], we
investigate here ‘5,6-dihydroxyindole-melanin immobi-
lized PSi’ as a prototypal device for the generation of
white light-induced photocurrent.

Methods
Porous silicon
PSi samples were prepared by electrochemical etch in
the dark of (100)-oriented, phosphorous doped, n+-type
monocrystalline Si wafers from Siltronix (Archamps
Technopole, Archamps, France) using the procedure
described in [37]. The resistivity of the wafers is in the
0.007 to 0.003 ohm/cm range. The constant current
etching process [38,39] has been performed in a polyvi-
nylchloride electrochemical cell using HF:H2O:ethanol
solution in 15:15:70 percent, respectively. The potential
source was a PARSTAT 2273 potentiostat from Prince-
ton Applied Research (Oak Ridge, TN, USA). The vari-
ous components of the fabrication cell are schematically
shown in Figure 1. The silicon substrate acts as the
working electrode and a platinum wire or grid is used as
a counter electrode.
All samples considered have a nominal 5 μm thickness.

The relation between the samples' thickness and their re-
spective fabrication time has been studied by means of
scanning electron microscopy (SEM). In Figure 2 we show
an example of thickness measurement performed on a
29 μm-thick PSi sample. The scale is shown at the bottom
of the image. The porous layer (comprised between the
two orange lines) and the bulk Si substrate are indicated,
together with the measured thickness value. The thickness
measurements proved to be fully reproducible for any
thickness below or equal to 29 μm (the thickest sample
tested) and directly proportional to the formation time.
The samples' porosity, measured by gravimetry, was 55 %
(empty/full ratio) for all samples. A few samples have been
electrochemically oxidized, in the same cell used for the
formation process, using a 0.1 M aqueous solution of
KNO3 and a constant current I=−5 mA. The optical re-
flectivity measurements were performed using a PerkinEl-
mer (Perkin Elmer Italia SpA, Monza (MI), Italy) Lambda
950 spectrometer equipped with the Universal Reflectance
Accessory using an incidence angle of 8°.
Eumelanin
Eumelanin formation starts from a tyrosinase-catalyzed
oxidation of tyrosine (Figure 3) in a multistep process up



Figure 3 Schematic path of eumelanin formation [29] and
proposed hierarchical structure of the pigment. Early DHI
oligomers are shown [40].
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to 5,6-dihydroxyindole (DHI) and 5,6 dihydroxyindole-2-
carboxylic acid. Oxidative polymerization of these indoles
then gives rise to the black-brown variety of melanin bio-
polymer: the eumelanin [29].
In our experiments, DHI [41] and synthetic eumelanin

[42] were prepared according to the literature: a solution
of DHI (50 mmol) in phosphate buffer, 0.1 M, pH 7.4,
(10 ml) was treated with tyrosinase (400 units) under a
stream of oxygen for 4 h at 25 °C, then acidified to pH
4.5 and washed first with distilled water and then in
methanol/water 7/3.
Eumelanin immobilization on porous Si was obtained by

treating the substrates with the appropriate solution/sus-
pension of DHI or synthetic melanin: methanol, methanol/
water, or methanol/phosphate buffer pH 7.0 were used as
liquid phase. The substrates were processed with three
cycles, 5 min each, in ultrasound bath, followed by 4 h
oxygen exposition. When suitable, tyrosinase was also
added to the mixture to promote oxidation process.
Photocurrent measuring procedure
Electrical contacts were realized by deposition of gold
spots on top of the empty and impregnated porous
layers by sputtering using an Emitech K450 sputter
coater (Quorum Technologies Ltd, East Grinstead, West
Sussex, UK). On each sample, four contacts were rea-
lized to test the reproducibility of the procedure.
The samples' photoconductivity was tested using a

PM8 Analytical prober and a Keithley multimeter
(Keithley Instruments Inc., Cleveland, OH, USA). The
light source was a tungsten-halogen lamp, whose spec-
tral range at the output of the optical system was in the
400 to 850 nm interval. The active external surface of
the samples involved in the photocurrent generation is
estimated of the order of a squared millimeter.

Results and discussion
Different approaches for the immobilization of eumela-
nin in the porous matrix have been explored, including
treatment of the porous Si with preformed synthetic
eumelanin and in situ-induced oxidative polymerization
of DHI.
To gain insight into the mode of coupling (Figure 3)

of DHI during polymer buildup in this procedure, which
is important to match the basic structural features of the
immobilized DHI-derived polymer [30,32] and to valid-
ate the procedure, mother liquors were collected and the
reaction was stopped in the early stages by the addition
of sodium dithionite to reduce the oxidized species. The
crude oligomer-containing mixture was acetylated
according to an established protocol [40] and examined
by thin layer chromatography (TLC). This treatment of
the mixture allowed the isolation of two main eumelanin
oligomer intermediates, which were identified as the
acetylated 2,7′- and 2,4′-biindolyls.
The oligomer identification has been performed using

the protocols reported in [40] and [43]. In detail, after
2 min of the substrate treatment, the liquors were
removed and the oxidation was halted by the addition of
5 % w/w aqueous solution of sodium dithionite and acid-
ified to pH 4 with 3 M HCl. The reaction mixture was
extracted repeatedly with ethyl acetate (3 × 250 mL), and
the combined organic layers were dried over sodium sul-
fate and taken to dryness.
The residue was acetylated with acetic anhydride-

pyridine 95:5 (v/v) and fractionated by preparative TLC
(CHCl3/MeOH 98:2) to identify the constituents by
comparison with synthetic standards with known
structure.
The optical reflectivity measurements were performed

on both empty and impregnated PSi matrices to explore
the impregnation procedure. In Figure 4 we show optical
reflectivity spectra obtained on two PSi samples, where
the thin-layer Fabry-Pérot interference fringes are clearly
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Figure 4 Absolute optical reflectivity of PSi samples. The blue curve refers to an empty sample and the red curve to a eumelanin-
impregnated PSi layer.
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visible. The red curve corresponds to an impregnated PSi
sample and the blue curve to an empty one with equal
thickness. The discontinuity for wavelengths longer than
890 nm in the red curve is due to instrumental adjust-
ment routine at the detector change. There are two main
differences between the two curves. The first one is in the
intensity of the interference fringes. The fact that the
impregnated sample shows less intense fringes can be
attributed to an increase of the absorption coefficient of
the layer [44]. The second difference between the two
curves is the higher number of fringes per wavelength
range for the impregnated sample. This increase can be
correlated to an increase of the optical thickness of the
sample [44]. Given that the two samples have the same
nominal thickness, this difference is clearly related
mainly to the change in the refractive index.
In Figure 5 we show the dependence of the interference

peak maxima number on the inverse of the wavelength for
the two samples of Figure 4, the color code being also the
same. If the refractive index had been constant, this plot
would have been a straight line [45]. In our case, however,
considering the large spectral range explored, the refract-
ive index is not constant. For this reason, the curves have
been fitted separately for the higher (left) and lower (right)
energy sides of the spectra. Since the slopes of the linear
fits related to the impregnated sample are always higher
than those related to the empty sample, the results of
Figure 4 demonstrate that the refractive index of the
impregnated PSi layer is higher than that of the empty PSi
layer in the whole spectral range examined. From the
results of Figures 4 and 5, we can then conclude that the
eumelanin impregnation process leads to an increase of
both the absorption coefficient and the refractive index of
the PSi matrix. Moreover, the absence of beats in the
interference fringes of the impregnated layer indicates that
the impregnation process is quite homogeneous through-
out the whole PSi thickness and that there is no double
layer given by a partial, depth-limited, eumelanin pore
penetration.
These results are in agreement with the reported litera-

ture absorption coefficients of eumelanin and PSi. To
show this, in Figure 6, we plot the absorption coefficients
of 78 % p+-type and 58 % p-type porous Si [44], bulk Si
[46], and eumelanin [16]. The absorption coefficients
dispersion curves for eumelanin have been obtained
from thin (80 nm) and thick (800 nm) film. All symbols
are explained in the figure caption.
The data shown in Figure 6 clearly evidenced that the

optical absorption coefficient of both thin and thick
eumelanin films is significantly greater than that of PSi
and even bulk silicon for photon energies lower than
2.5 eV (500 nm). For wavelengths longer than 600 to
650 nm, the eumelanin absorption coefficient is still sig-
nificant (well above than 104 cm−1) and more than a fac-
tor of ten larger than that of PSi whose absolute value
becomes less than 103 cm−1. This is where the effect of
eumelanin may be expected to generate a more signifi-
cant difference in the photoconductive behavior of
empty and impregnated porous layers. It is important to
note that from [16], the eumelanin absorption coefficient
at 1,400 nm is still more than 6,000 cm−1 for thin films
and 8,000 cm−1 for thick films.
The photoconductive properties of porous Si samples

were studied with and without eumelanin for unoxidized
layers. A few samples were oxidized at several oxidation
levels. This test has been done because, although the
partial oxidation process may reduce the PSi conductiv-
ity, the oxidation-induced modification of the eumelanin
adhesion to the pore walls could, in principle, more than
counterbalance the effect. In all cases, however, all the
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partially oxidized samples showed no measurable photo-
sensitivity. Whatever the impinging light intensity value
(up to a maximum of about 200 W/m2) is, with and
without eumelanin, our results conclusively show that
even a thin oxide layer on the pore's wall is sufficient to
severely limit the layers' photosensitivity.
All non-oxidized samples, for all eumelanin im-

mobilization approaches considered here, showed a
marked photosensitivity. When illuminating with the
whole lamp spectrum, the variation in the photocurrent
intensity from very low ambient light to the maximum im-
pinging light intensity showed an increase of more than
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50

40

30

20

10

0

3
x 

cm
-1

)

80600400

Wavele

Figure 6 Literature absorption coefficients dispersion curves for PSi, S
dispersion curves reported in literature for several materials: eumelanin film
58 % porosity p-type (inverted triangles) and 78 % p+-type (upright triangle
absorption coefficient of eumelanin is significantly larger than that of PSi, b
longer than about 650 nm. It is worth noting that this is also valid with res
three orders of magnitude, fully reproducible for the same
gold plot. However, while the wavelength dependence was
highly reproducible, as discussed later in more detail, a
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ally identical. At the same time, the maximum photogen-
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impregnated samples. The maximum absolute photocur-
rent values measured with full illumination for impreg-
nated and empty PSi were within about a factor of two,
while the photovoltage measurement were much closer
(5.1 mA/200 mV for empty PSi and 2.2 mA/150 mV for
impregnated samples). The observed variability did not
appear to depend on the eumelanin immobilization
procedure.
To better evaluate the effect of the eumelanin insertion

on the photoconductive properties of the samples and to
discriminate possible contact issues from the samples' be-
havior, we measured the wavelength dependence of the
light response of impregnated and empty porous Si sam-
ples using low-pass optical filters in front of the samples.
By this approach, using a given filter the light arriving onto
the samples' surface will only have wavelengths longer
than the cutoff filter's. This means that the photocurrent
measured with each filter will be given by all photocarriers
generated by the interaction of the samples with the re-
sidual spectral range, that is, the part whose photon en-
ergy is lower than that characteristic of the cutoff filter.
Consequently, if the carrier photogeneration occurs in the
whole source spectrum, the plot of the photocurrent as a
function of the cutoff wavelengths is expected to be a
monotone curve which is increasing when moving to-
wards shorter wavelengths. The results obtained on typical
samples in our experiments are shown in Figure 7. The
samples indicated as ‘empty PSi 1’ and ‘impregnated PSi 1’
are the same samples whose optical reflectivity spectra
have been shown in Figure 4. The absolute current values
are comparable (Imax= 0.8 μA for the two empty PSi layers
and Imax = 0.9 μA for the impregnated sample labeled
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Figure 7 Photocurrent for four typical porous Si samples. Two of the s
and two (empty triangles and squares) are as prepared. The sample labeled
unoptimized contact fabrication process. The wavelength reported in the a
impregnated PSi 1) for three of the samples shown, while
for one of the impregnated samples, the maximum abso-
lute photocurrent is significantly lower (Imax= 0.09 μA,
Vmax = 100 mV with full spectral range illumination).
To separate the contact-related issues from the photoge-

neration behavior of the samples, the photocurrent inten-
sity and the wavelength dependent photogeneration
behavior must be separated. If the behavior of the samples
would prove to be the same with respect to the maximum
recorded photocurrent, it would be possible to attribute
the intensity differences from sample to sample essentially
to contact-related issues and not to the hybrid material
building procedure adopted. Accordingly, we show in
Figure 8 the photocurrents of the two impregnated PSi
samples of Figure 7, normalized by dividing each value
by the maximum measured photocurrent of that sample.
As in Figure 7, the normalized photocurrents are plotted
vs. the low-pass filters cutoff wavelengths. Please note,
however, that the peak at 500 nm of the impregnated
PSi 1 sample, being clearly due to signal noise, has not
been used as a reference for the normalization.
The striking feature of Figure 8 is the almost complete

superposition of the two curves, indicating that the rela-
tive behavior of the two impregnated samples is the
same, despite the factor of 20 within their maximum
values. This clearly indicates, as stated above, that the
observed photocurrent intensity fluctuation is funda-
mentally related to the contact fabrication process and
does not point to a poor reproducibility of the hybrid
material behavior.
From the results shown in Figures 7 and 8, there are

several considerations that can be made. First, all curves
800700600
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Photocurrent of impregnated and
 empty PSi matrices as a function of the 

amples (full rounds and diamonds) are impregnated with eumelanin
‘impregnated PSi 2’ shows very low photocurrent intensity due to the
bscissa is the cutoff wavelength of the low-pass filters we used.
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show a monotonic photocurrent increase when going
from longer to shorter wavelengths, indicating that the ab-
sorption takes place in the whole available light spectrum
for both impregnated and empty PSi layers. The second
significant feature is that impregnated samples show a
steep photocurrent increase in the lower energy part of
the spectrum. This is coherent with what can be expected
by the comparison of the optical absorption coefficients of
the materials, as discussed earlier in this work. If we com-
pare empty and impregnated samples with similar max-
imum photocurrent, about 40 % of the total photocurrent
is generated, for impregnated samples, when using wave-
lengths longer than 780 nm; while for empty PSi layers,
the same wavelength range gives only about 15 % of the
maximum photocurrent.
The latter effect is even more significant if we keep in

mind the very low intensity of the impinging light in the
700 to 850 nm range: for the impregnated samples, 40 %
of the total photocurrent is obtained with a very limited
part of the total spectrum; while to obtain the same
amount of photocurrent with the empty PSi samples, we
need to increase the wavelength range up to 550 nm, in-
cluding most of the available lamp spectral range.
These results show how the impregnation of the PSi

matrix with eumelanin significantly increases the capabil-
ity of the layer to efficiently photogenerate carriers from
light especially when approaching the infrared region.

Conclusions
We have shown that the photovoltaic properties of PSi
may be significantly improved by impregnation with
eumelanin. In particular, we showed that introducing the
pigment in the porous Si matrix leads to a significantly
more efficient photocurrent generation in the lower en-
ergy part of the experimental wavelength range explored
with respect to empty porous Si layers.
This result not only contributes to expand the scope

of heterojunctions in developing a new hybrid material
but also provides the first evidence of the eumelanin
capability to efficiently collect the photon energy. In a
given substrate, eumelanin seems to act as a kind of ‘an-
tenna’, modifying the range of the useful wavelength
range for photoconversion application.
Although further experimental and theoretical studies

are needed to improve the electrical contacts reproducibil-
ity and to reach a deeper understanding of the observed
behavior in view of future development and applications,
the proof of principle device presented here opens a new
window into the evolving panorama of eumelanin-based
devices and contributes to the development of bioinspired
and biocompatible optoelectronic devices.
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