40 research outputs found

    Pkd2 Mesenteric Vessels Exhibit a Primary Defect in Endothelium-Dependent Vasodilatation Restored by Rosiglitazone

    Get PDF
    Patients with autosomal dominant polycystic kidney disease have a high prevalence of hypertension and structural vascular abnormalities, such as intracranial aneurysms. Hypertension can develop in childhood and often precedes a significant reduction in the glomerular filtration rate. The major aim of this study was to investigate whether a primary endothelial defect or a vascular smooth muscle (VSM) defect was present in murine polycystic kidney disease (Pkd)2 heterozygous mesenteric vessels before the development of renal failure or hypertension. Using pressure myography, we observed a marked defect in ACh-stimulated endothelium-dependent vasodilatation in Pkd2 arterioles. In contrast, Pkd2 vessels responded normally to sodium nitroprusside, phenylephrine, KCl, and pressure, indicating unaltered VSM-dependent responses. Pretreatment with the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone significantly restored ACh-dependent vasodilation in Pkd2 mice. Isolated heterozygous Pkd2 endothelial cells displayed normal ACh-stimulated Ca2+ and nitric oxide production. However, isolated Pkd2 heterozygous VSM cells displayed basal increases in superoxide and sodium nitroprusside-stimulated peroxynitrite formation, which were both suppressed by rosiglitazone. Furthermore, we observed a defective response of Pkd2 mesenteric venules to ACh in vivo, which was more marked after ischemia-reperfusion injury. In conclusion, the results of our study suggest that the defect in vasodilatation in Pkd2 heterozygous vessels is primarily due to a reduction in nitric bioavailability secondary to increased vascular oxidative stress. The ability of rosiglitazone to correct this phenotype suggests that this defect is potentially reversible in patients with autosomal dominant polycystic kidney disease

    Identification and functional characterization of an N-terminal oligomerization domain for polycystin-2*

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD), the most common inherited cause of kidney failure, is caused by mutations in either PKD1 (85%) or PKD2 (15%). The PKD2 protein, polycystin-2 (PC2 or TRPP2), is a member of the transient receptor potential (TRP) superfamily and functions as a non-selective calcium channel. PC2 has been found to form oligomers in native tissues suggesting that it may form functional homo- or heterotetramers with other subunits, similar to other TRP channels. Our experiments unexpectedly revealed that PC2 mutant proteins lacking the known C-terminal dimerization domain were still able to form oligomers and co-immunoprecipitate full-length PC2, implying the possible existence of a proximal dimerization domain. Using yeast two-hybrid and biochemical assays, we have mapped an alternative dimerization domain to the N terminus of PC2 (NT2-1-223, L224X). Functional characterization of this domain demonstrated that it was sufficient to induce cyst formation in zebrafish embryos and inhibit PC2 surface currents in mIMCD3 cells probably by a dominant-negative mechanism. In summary, we propose a model for PC2 assembly as a functional tetramer which depends on both C- and N-terminal dimerization domains. These results have significant implications for our understanding of PC2 function and disease pathogenesis in ADPKD and provide a new strategy for studying PC2 function

    STAT5 drives abnormal proliferation in autosomal dominant polycystic kidney disease.

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) leads to renal failure. The hallmark of ADPKD is increased epithelial proliferation, which has been proposed to be due to atypical signaling including abnormal JAK-STAT activity. However, the relative contribution of JAK-STAT family members in promoting proliferation in ADPKD is unknown. Here, we present siRNA JAK-STAT-focused screens discovering a previously unknown proliferative role for multiple JAK-STAT components (including STAT1, STAT2, STAT4, STAT5a, and STAT5b). Amongst these, we selected to study the growth hormone/growth hormone receptor/STAT5-axis because of its known role as a regulator of growth in nonrenal tissues. Loss of STAT5 function, facilitated by pharmacological inhibition or siRNAs, significantly reduced proliferation with an associated reduction in cyst growth in vitro. To study whether STAT5 is abnormally activated in vivo, we analyzed its expression using two independent mouse models of ADPKD. STAT5 was nuclear, thus activated, in renal epithelial cyst lining cells in both models. To test whether forced activation of STAT5 can modulate proliferation of renal cells in vivo, irrespective of the Pkd1 status, we overexpressed growth hormone. These mice showed increased STAT5 activity in renal epithelial cells, which correlated with de novo expression of cyclin D1, a STAT5 target gene. Chromatin immunoprecipitation experiments revealed that STAT5 transcriptionally activated cyclin D1 in a growth hormone-dependent fashion, thus providing a mechanism into how STAT5 enhances proliferation. Finally, we provide evidence of elevated serum growth hormone in Pkd1 mutant mice. Thus, the growth hormone/STAT5 signaling axis is a novel therapeutic target in ADPKD

    An update on the use of tolvaptan for autosomal dominant polycystic kidney disease: consensus statement on behalf of the ERA Working Group on Inherited Kidney Disorders, the European Rare Kidney Disease Reference Network and Polycystic Kidney Disease International

    Get PDF
    Approval of the vasopressin V2 receptor antagonist tolvaptan—based on the landmark TEMPO 3:4 trial—marked a transformation in the management of autosomal dominant polycystic kidney disease (ADPKD). This development has advanced patient care in ADPKD from general measures to prevent progression of chronic kidney disease to targeting disease-specific mechanisms. However, considering the long-term nature of this treatment, as well as potential side effects, evidence-based approaches to initiate treatment only in patients with rapidly progressing disease are crucial. In 2016, the position statement issued by the European Renal Association (ERA) was the first society-based recommendation on the use of tolvaptan and has served as a widely used decision-making tool for nephrologists. Since then, considerable practical experience regarding the use of tolvaptan in ADPKD has accumulated. More importantly, additional data from REPRISE, a second randomized clinical trial (RCT) examining the use of tolvaptan in later-stage disease, have added important evidence to the field, as have post hoc studies of these RCTs. To incorporate this new knowledge, we provide an updated algorithm to guide patient selection for treatment with tolvaptan and add practical advice for its use

    Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study

    Get PDF
    The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10−8) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10−8). The top IBC association for SBP was rs2012318 (P= 6.4 × 10−6) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10−6) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexit

    Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study.

    Get PDF
    The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10(-8)) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10(-8)). The top IBC association for SBP was rs2012318 (P= 6.4 × 10(-6)) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10(-6)) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexity

    Core outcome domains for trials in autosomal dominant polycystic kidney disease: An international Delphi survey

    Get PDF
    Rationale & Objective Outcomes reported in trials involving patients with autosomal dominant polycystic kidney disease (ADPKD) are heterogeneous and rarely include patient-reported outcomes. We aimed to identify critically important consensus-based core outcome domains to be reported in trials in ADPKD. Study Design An international 2-round online Delphi survey was conducted in English, French, and Korean languages. Setting & Participants Patients/caregivers and health professionals completed a 9-point Likert scale (7-9 indicating critical importance) and a Best-Worst Scale. Analytical Approach The absolute and relative importance of outcomes were assessed. Comments were analyzed thematically. Results 1,014 participants (603 [60%] patients/caregivers, 411 [40%] health professionals) from 56 countries completed round 1, and 713 (70%) completed round 2. The prioritized outcomes were kidney function (importance score, 8.6), end-stage kidney disease (8.6), death (7.9), blood pressure (7.9), kidney cyst size/growth (7.8), and cerebral aneurysm (7.7). Kidney cyst–related pain was the highest rated patient-reported outcome by both stakeholder groups. Seven themes explained the prioritization of outcomes: protecting life and health, directly encountering life-threatening and debilitating consequences, specificity to ADPKD, optimizing and extending quality of life, hidden suffering, destroying self-confidence, and lost opportunities. Limitations Study design precluded involvement from those without access to internet or limited computer literacy. Conclusions Kidney function, end-stage kidney disease, and death were the most important outcomes to patients, caregivers, and health professionals. Kidney cyst–related pain was the highest rated patient-reported outcome. Consistent reporting of these top prioritized outcomes may strengthen the value of trials in ADPKD for decision making

    Associations of autozygosity with a broad range of human phenotypes

    Get PDF
    In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (F-ROH) for >1.4 million individuals, we show that F-ROH is significantly associated (p <0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: F-ROH equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44-66%] in the odds of having children. Finally, the effects of F-ROH are confirmed within full-sibling pairs, where the variation in F-ROH is independent of all environmental confounding.Peer reviewe

    Molecular pathogenesis of ADPKD: The polycystin complex gets complex

    Get PDF
    Molecular pathogenesis of ADPKD: The polycystin complex gets complex. Autosomal-dominant polycystic kidney disease (ADPKD) is one of the most common human monogenic diseases with an incidence of 1:400 to 1:1000. It is characterized by the progressive development and enlargement of focal cysts in both kidneys, typically resulting in end-stage renal disease (ESRD) by the fifth decade. The cystogenic process is highly complex with a cellular phenotype consistent with “dedifferentiation” (i.e., a high proliferative rate, increased apoptosis, altered protein sorting, changed secretory characteristics, and disorganization of the extracellular matrix). Although cystic renal disease is the major cause of morbidity, the occurrence of nonrenal cysts, most notably in the liver (occasionally resulting in clinically significant polycystic liver disease) and the increased prevalence of other abnormalities including intracranial aneurysms, indicate that ADPKD is a systemic disorder. Following the identification of the first ADPKD gene, PKD1, 10 years ago and PKD2 2 years later, considerable progress has been made in defining the etiology and understanding the pathogenesis of this disorder, knowledge that is now leading to the development of several promising new therapies. The purpose of this review is to summarize our current state of knowledge as to the structure and function of the PKD1 and PKD2 proteins, polycystin-1 and -2, respectively, and explore how mutation at these loci results in the spectrum of changes seen in ADPKD
    corecore