409 research outputs found
Gastrointestinal failure in intensive care: a retrospective clinical study in three different intensive care units in Germany and Estonia
BACKGROUND: While gastrointestinal problems are common in ICU patients with multiple organ failure, gastrointestinal failure has not been given the consideration other organ systems receive. The aim of this study was to evaluate the incidence of gastrointestinal failure (GIF), to identify its risk factors, and to determine its association with ICU mortality. METHODS: A retrospective analysis of adult patients (n = 2588) admitted to three different ICUs (two ICUs at the university hospital Charité-Universitätsmedizin Berlin, Germany and one at Tartu University Clinics, Estonia) during the year 2002 was performed. Data recorded in a computerized database were used in Berlin. In Tartu, the data documented in the patients' charts was retrospectively transferred into a similar database. GIF was defined as documented gastrointestinal problems (food intolerance, gastrointestinal haemorrhage, and/or ileus) in the patient data at any period of their ICU stay. ICU mortality, length of stay, and duration of mechanical ventilation were assessed as outcome parameters. RESULTS: GIF was identified in 252 patients (9.7% of all patients). Only 20% of GIF patients were identifiable at admission. GIF was related to significantly higher mortality (43.7% vs. 5.3% in patients without GIF), as well as prolonged length of ICU stay (10 vs. 2 days) and mechanical ventilation (8 vs. 1 day), p < 0.001, respectively. Patients' profile (emergency surgical or medical), APACHE II and SOFA scores and the use of catecholamines at admission were identified as independent risk factors for the development of GIF. Development of GIF during ICU stay was an independent predictor for death. CONCLUSION: Gastrointestinal failure represents a relevant clinical problem accompanied by an increased mortality, longer ICU stay and mechanical ventilation
Overcoming degradation in spatial multiplexing systems with stochastic nonlinear impairments
Single-mode optical fibres now underpin telecommunication systems and have allowed continuous increases in traffic volume and bandwidth demand whilst simultaneously reducing cost- and energy-per-bit over the last 40 years. However, it is now recognised that such systems are rapidly approaching the limits imposed by the nonlinear Kerr effect. To address this, recent research has been carried out into mitigating Kerr nonlinearities to increase the nonlinear threshold and into spatial multiplexing to offer additional spatial pathways. However, given the complexity associated with nonlinear transmission in spatial multiplexed systems subject to random inter-spatial-path nonlinearities it is widely believed that these technologies are mutually exclusive. By investigating the linear and nonlinear crosstalk in few-mode fibres based optical communications, we numerically demonstrate, for the first time, that even in the presence of significant random mixing of signals, substantial performance benefits are possible. To achieve this, the impact of linear mixing on the Kerr nonlinearities should be taken into account using different compensation strategies for different linear mixing regimes. For the optical communication systems studied, we demonstrate that the performance may be more than doubled with the appropriate selection of compensation method for fibre characteristics which match those presented in the literature
Characteristics of Different Systems for the Solar Drying of Crops
Solar dryers are used to enable the preservation of agricultural crops, food processing industries for
dehydration of fruits and vegetables, fish and meat drying, dairy industries for production of milk powder,
seasoning of wood and timber, textile industries for drying of textile materials. The fundamental concepts and
contexts of their use to dry crops is discussed in the chapter. It is shown that solar drying is the outcome of
complex interactions particular between the intensity and duration of solar energy, the prevailing ambient
relative humidity and temperature, the characteristics of the particular crop and its pre-preparation and the
design and operation of the solar dryer
Accumulation of Endogenous LITAF in Aggresomes
LITAF is a 161 amino acid cellular protein which includes a proline rich N-terminus and a conserved C-terminal domain known as the simple-like domain. Mutations in LITAF have been identified in Charcot-Marie tooth disease, a disease characterized by protein aggregates. Cells transfected with cellular LITAF reveal that LITAF is localized to late endosomes/lysosomes. Here we investigated the intracellular localization of endogenous LITAF. We demonstrated that endogenous LITAF accumulates at a discrete cytoplasmic site in BGMK cells that we identify as the aggresome. To determine the domain within LITAF that is responsible for the localization of LITAF to aggresomes, we created a construct that contained the C-terminal simple-like domain of LITAF and found that this construct also localizes to aggresomes. These data suggest the simple-like domain is responsible for targeting endogenous LITAF to the aggresome
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Nucleologenesis in the Caenorhabditis elegans Embryo
In the Caenorhabditis elegans nematode, the oocyte nucleolus disappears prior to fertilization. We have now investigated the re-formation of the nucleolus in the early embryo of this model organism by immunostaining for fibrillarin and DAO-5, a putative NOLC1/Nopp140 homolog involved in ribosome assembly. We find that labeled nucleoli first appear in somatic cells at around the 8-cell stage, at a time when transcription of the embryonic genome begins. Quantitative analysis of radial positioning showed the nucleolus to be localized at the nuclear periphery in a majority of early embryonic nuclei. At the ultrastructural level, the embryonic nucleolus appears to be composed of a relatively homogenous core surrounded by a crescent-shaped granular structure. Prior to embryonic genome activation, fibrillarin and DAO-5 staining is seen in numerous small nucleoplasmic foci. This staining pattern persists in the germline up to the ∼100-cell stage, until the P4 germ cell divides to give rise to the Z2/Z3 primordial germ cells and embryonic transcription is activated in this lineage. In the ncl-1 mutant, which is characterized by increased transcription of rDNA, DAO-5-labeled nucleoli are already present at the 2-cell stage. Our results suggest a link between the activation of transcription and the initial formation of nucleoli in the C. elegans embryo
Electrical Stimulation Influences Satellite Cell Proliferation and Apoptosis in Unloading-Induced Muscle Atrophy in Mice
Muscle atrophy caused by disuse is accompanied by adverse physiological and functional consequences. Satellite cells are the primary source of skeletal muscle regeneration. Satellite cell dysfunction, as a result of impaired proliferative potential and/or increased apoptosis, is thought to be one of the causes contributing to the decreased muscle regeneration capacity in atrophy. We have previously shown that electrical stimulation improved satellite cell dysfunction. Here we test whether electrical stimulation can also enhance satellite cell proliferative potential as well as suppress apoptotic cell death in disuse-induced muscle atrophy. Eight-week-old male BALB/c mice were subjected to a 14-day hindlimb unloading procedure. During that period, one limb (HU-ES) received electrical stimulation (frequency: 20 Hz; duration: 3 h, twice daily) while the contralateral limb served as control (HU). Immunohistochemistry and western blotting techniques were used to characterize specific proteins in cell proliferation and apoptosis. The HU-ES soleus muscles showed significant improvement in muscle mass, cross-sectional area, and peak tetanic force relative to the HU limb (p<0.05). The satellite cell proliferative activity as detected within the BrdU+/Pax7+ population was significantly higher (p<0.05). The apoptotic myonuclei (detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) and the apoptotic satellite cells (detected by cleaved Poly [ADP-ribose] polymerase co-labeled with Pax7) were reduced (p<0.05) in the HU-ES limb. Furthermore the apoptosis-inducing factor and cleaved caspase-3 were down-regulated while the anti-apoptotic Bcl-2 protein was up-regulated (p<0.05), in the HU-ES limb. These findings suggest that the electrical stimulation paradigm provides an effective stimulus to rescue the loss of myonuclei and satellite cells in disuse muscle atrophy, thus maintaining a viable satellite cell pool for subsequent muscle regeneration. Optimization of stimulation parameters may enhance the outcome of the intervention
A multiplatform approach identifies miR-152-3p as a common epigenetically regulated onco-suppressor in prostate cancer targeting TMEM97
Prostate cancer (PCa) is a major cause of morbidity and mortality in men worldwide. MicroRNAs are globally downregulated in PCa, especially in poorly differentiated tumors. Nonetheless, the underlying mechanisms are still elusive. Herein, using combined analysis of microRNAs expression and genomewide DNA methylation, we aimed to identify epigenetically downregulated microRNAs in PCa.Research Center of Portuguese Oncology Institute of Porto (FB-GEBC-27 and 19-CI-IPOP-2016). JR-C and CSG are supported by FCT- Fundação para a Ciência e Tecnologia PhD fellowships (SFRH/BD/71293/2010 and SFRH/BD/92786/2013), SS is supported by a PhD fellowship IPO/ESTIMA-1 NORTE-01-0145-FEDER-000027, and IG is a research fellow from the strategic funding of FCT (PCT: PEst- UID/DTP/00776/2013 and COMPETE: POCI-01-0145-FEDER-006868). BMC is funded by FCT-Fundação para a Ciência e a Tecnologia (IF/00601/2012)info:eu-repo/semantics/publishedVersio
Gene Expression Profiles of Sporadic Canine Hemangiosarcoma Are Uniquely Associated with Breed
The role an individual's genetic background plays on phenotype and biological behavior of sporadic tumors remains incompletely understood. We showed previously that lymphomas from Golden Retrievers harbor defined, recurrent chromosomal aberrations that occur less frequently in lymphomas from other dog breeds, suggesting spontaneous canine tumors provide suitable models to define how heritable traits influence cancer genotypes. Here, we report a complementary approach using gene expression profiling in a naturally occurring endothelial sarcoma of dogs (hemangiosarcoma). Naturally occurring hemangiosarcomas of Golden Retrievers clustered separately from those of non-Golden Retrievers, with contributions from transcription factors, survival factors, and from pro-inflammatory and angiogenic genes, and which were exclusively present in hemangiosarcoma and not in other tumors or normal cells (i.e., they were not due simply to variation in these genes among breeds). Vascular Endothelial Growth Factor Receptor 1 (VEGFR1) was among genes preferentially enriched within known pathways derived from gene set enrichment analysis when characterizing tumors from Golden Retrievers versus other breeds. Heightened VEGFR1 expression in these tumors also was apparent at the protein level and targeted inhibition of VEGFR1 increased proliferation of hemangiosarcoma cells derived from tumors of Golden Retrievers, but not from other breeds. Our results suggest heritable factors mold gene expression phenotypes, and consequently biological behavior in sporadic, naturally occurring tumors
- …