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Abstract 

Solar dryers are used to enable the preservation of agricultural crops, food processing industries for 

dehydration of fruits and vegetables, fish and meat drying, dairy industries for production of milk powder, 

seasoning of wood and timber, textile industries for drying of textile materials. The fundamental concepts and 

contexts of their use to dry crops is discussed in the chapter.  It is shown that solar drying is the outcome of 

complex interactions particular between the intensity and duration of solar energy, the prevailing ambient 

relative humidity and temperature, the characteristics of the particular crop and its pre-preparation and the 

design and operation of the solar dryer. 
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1. Introduction 

 

Drying agricultural crops enables  

 

• Lower post-harvest crop losses 

• Production of high quality food Products 

• Long-term storage without deterioration 

• Securing higher prices for crops at times after harvest 

• Planning of early harvests 

• Maintenance of seed availability   

 

Traditional open-sun drying has, since ancient times, been accomplished by simply placing the crop outdoors, 

often on a prepared surface or mat, to receive insolation.  This causes the crop to heat-up and release moisture 

to the warm relatively-dry adjacent air (Jain and Tiwari, 2003). Open-sun drying remains widely used for post-

harvest crop preservation in locations where appropriately sunny and dry conditions prevail with predictable 

reliably very soon after the crop has been harvested. If a sufficiently large land area is readily available then 

open-sun drying can be used to dry single, or very shallow, crop depths without further capital investment.  

Open-sun drying entails limited specialist expertise, though some skill is required to optimally cut a crop into 

pieces whose size and shape meet consumer expectations whist also achieving reasonably rapid drying.  

Open-sun drying can be labour intensive as, in addition to crop preparation, the crop usually must be turned 

and, if it rains, moved to storage. Open-sun drying also is prone to contamination and damage by birds, rats 

and insects. Open-sun drying can proceed slowly and intermittently with the crop finally being over-dried or, 

more commonly, under-dried to a relatively high final moisture content. As there is no protection from rain or 

dew, the crop can suffer mould growth during drying.  

 

The key strategic drivers to the greater use of solar energy in crop processing are (i) global greenhouse gas 

emissions (Kumar and Kandpal, 2005) (ii) local pollution caused by the use of fossil fuels, (iii) the desire for 

security of energy supply energy and (iv) certainly of life-cycle system costs. By providing a contained drying 

environment in which air has been heated by between 10-30oC above ambient temperature, solar dryers dry 

a crop more rapidly than an open-sun dryer. This faster drying (i) improves dried crop quality, (ii) enables a 

higher crop throughput and (iii) the drying area required is thus much smaller than open-sun drying. However 

careful design and operation is required to avoid drying a crop too rapidly as case hardening with subsequent 

internal mould growth may ensue. Solar dryers also protect foods from dust, insects, birds and animals. They 

can be constructed from locally available materials at a relatively low capital cost and there are usually no fuel 

costs.  

 

The key objectives of drying crops are to remove moisture as quickly as possible at a temperature that does 

not seriously affect the flavour, texture and colour of the ensuing food product. If the drying temperature is 

maintained too low, microorganisms may grow before the moist conditions for their development have reduced 

to the safe storage moisture content. After drying for a specific range of temperature for a particular crop 

moisture content must be maintained within specified limits to minimize deterioration.   



 

 3 

 

Temperatures from -37 C to 71oC kill bacteria and inactivate enzymes, although, as such temperatures are 

also likely to cause crop surface hardening, lower operating temperatures in the range 40 C to 45oC as shown 

in Table 1 are generally more common place in solar dryers. 

 

For many crops pretreatment is recommended such as washing, blanching and cutting into thin slices. Crops 

are generally harvested at moisture contents ranging from 16% to 30% wet basis and must be dried to a safe 

storage moisture contents given in Table 1. In grain drying, fissures that can arise from excessive moisture 

and temperature gradients lead to broken grains during milling reducing the milled cereal yield. Prompt packing 

in hermetically sealed containers is essential if for consumer acceptability higher safe storage moisture are 

used for example as is the case for some dried fruits.  
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Table 1 Drying requirements for common crops (Farkas, 2004) 
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2. Drying processes 

Solar drying is a natural or an intentional solar energy induced mass transfer process resulting in the removal 

of water by evaporation successful drying requires (i) sufficient solar heat to withdraw moisture (ii) sufficiently 

dry air to absorb released moisture (iii) appropriate control of solar heat gain to avoid cooking the crop and (iv) 

adequate air circulation to remove the moisture.  The rate of removal of moisture from a product is proportional 

to the difference between the average moisture content and the crop's equilibrium moisture content. The latter 

in equilibrium with air at a particular mean dry-bulb temperature and relative humidity at particular constant 

values of air relative humidity and temperature. The drying process takes place at a temperature that is 

between the temperatures of the air when entering the crop bed and when leaving the dryer. These processes 

can be summarised on a psychometric chart as shown in Figure 1. Air is heated at constant humidity ratio in 

the solar collector from point A to point B to pass through the drying crop isoenthalpalically from point B to 

point C.  The equilibrium temperature of drying air can be calculated by establishing a heat balance between 

molecules in moist air this becomes the saturated vapour pressure when air cannot take-up additional 

moisture.  Pressure equalization causes moisture to migrate from a region of high to low vapour pressure. 

 

Relative humidity is defined as the ratio of the mole fractions of water vapour in a present in the air to the 

maximum amount of vapour that the air can hold at a given temperature. Relative humidity is the ratio of the 

mass of water vapour to the mass of water vapour required to saturate air at that temperature. A dry-bulb 

temperature is the temperature at an ordinary thermometer. When a thermometer with a water-moistened 

wick-covered bulb is placed in a stream of unsaturated air, evaporation of water from the wick occurs that cools 

the bulb, the cooling is proportional to the evaporation rate, which is inversely proportional to the amount of 

water in the air. The final equilibrium steady-state temperature reached when the temperature of the 

thermometer remains unchanged is called the wet-bulb temperature. The psychometric wet-bulb temperature 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. A psychometric chart showing an illustrative example of a drying process (Adapted from Munisa et 

al., 2013) 
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is close to but does not precisely correspond to the thermodynamic wet-bulb temperature reached by moist air 

and water when air is adiabatically saturated by evaporating water. The greater the differences between the 

amounts of water in the air and the saturation water capacity the greater the temperature depression between 

the dry-bulb and wet-bulb temperatures. The dew-point temperature is the temperature at which water vapour, 

being cooled at a constant mixture pressure and humidity ratio, begins to condense. Enthalpy is the relative 

heat content of moist air per unit mass of dry air above a chosen datum temperature. The enthalpy of moist 

air per unit mass is the sum of the enthalpies per unit mass of dry air and of superheated water vapour. chosen.  

The humidity ratio is the rate of the vapour pressure of a given moist air sample to that in a saturated air sample 

at the same temperature and pressure.  

 
A crop drying rate is determined by the temperature and moisture content of the crop, the temperature, relative 

humidity and velocity of the drying air and thus, drying rate is of main importance. The drying time of each 

period depends on the nature of the product and the drying conditions. For hygroscopic agricultural products, 

typical drying rates exhibit up to four distinct periods as shown in Figure 2.  

 

 

Figure 2.  Drying Progression (Tomar et al., 2017) 

 

These are  

 

• Initially the crop heats until the drying temperature is achieved, at that juncture a constant drying rate 

ensues. 

•  constant-rate period during which the crop surface is saturated with water vapour and evaporation takes 

place continuously as at the material’s surface is enough water to evaporate. A constant-rate period is not 

exhibited distinctly by many crop products as their initial moisture content allows the falling rate to be 

reached almost immediately as dry commences. 

• falling rate period, when surface is not vapour saturated. Moisture diffusion is controlled by internal liquid 

movement while surface becomes continuously depleted. 
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• a concluding falling rate period, where the moisture content continues to decrease until equilibrium is 

achieved. For many crops drying is completed before the onset of a concluding falling rare period is 

reached. 

 
Figure 2 shows the four drying rates periods. This is followed by a falling drying rate caused by a continuous 

reduction in the rate of transfer of moisture from the crop's interior. decreases until the crop surface is no longer 

saturated. Water activity limit is defined by a relationship between the prevailing partial pressure of water, the 

partial pressure of pure water, at the same temperature and the relative humidity of the crop at the same 

temperature. Below the water activity limit, microorganisms stop growing. Beuchat (1981). 

 
Exergetic analyses of dryers have been undertaken (Onyegegbu et al., 1994; Celma and Cuadros, 2009). The 

inclusion of a solar chimney to maintain the air enclosed in the chimney at a higher temperature than ambient 

enhances buoyant air flow in natural circulation dryers (Bassey et al., 1994; Ferreira et al., 2008; Afriyie et al., 

2009; Das et al., 1989) and PV powered fans have also been used (Mumba 1996; Barnwal and Tiwari, 2008; 

Punlek et al., 2009). Roof-integrated air-heating solar collectors have been used for solar dryers (Roman et al, 

2009) in temperate climates, their output of heated air can also be used to heat farm buildings when not 

required for drying (Henricksson and Gustafsson, 1986). 

 

Dryers that include a biomass back-up heater (Bena and Fuller, 2002), energy storage (Ayensu and Asiedu 

Bondzie, 1986) or both (Madhlopa and Ngwalo, 2007) can continue the drying process from the day into the 

evening and night (Akyurt and Selcuk, 1973). Energy storage has been accomplished by including sensible 

heat storage, for example, in rock-beds (Chauhan et al., 1996, Jain, 2005; 2007) and by the use of phase 

change materials (Enibe, 2002). Heat pumps have been employed to increase drying air temperature (Best et 

al, 1994, Fadhel et al, 2011) and desiccants have been used to aid moisture removal (Thoruwa et al., 1996; 

Mahmouda and Ball,1991; Hodali and Bougard, 2001) 

 

The very extensive previous literature available on different types of solar dryers, their performance in 

particular climates and with specific crops has been bright together in several reviews (Sodha and Chandra, 

1094; Ekechukwu, 1999, Ekechukwu and Norton, 1999a, 1999b; Murthy, 2009; Sharma et al., 2009; Fudholi 

et al., 2010; Venkataraman et al., 2012). Solar drying has been employed to dry grain (Radajewski et al., 1987; 

Mohmouda and Ball, 1991; Tiwari et al., 1994; Fraser and Muir, 1980; Tayeb, 1986; Roa and Macedo 1976) 

and rice (Basunia and Abe, 2001; Zaman and Bala, 1989; Bala and Wood, 1994; Janjai et al., 1994). A very 

broad range of dried fruits have been produced using a variety of solar dryers. Some examples of solar dried 

fruits include bananas (Schirmer et al., 1996; Amer et al., 2010; Smitabhindu et al., 2008; Koua et al., 2009; 

Janjai et al., 2009), papaya (Narinesingh, and Mohammed-Maraj, 1998), mangos (Koua et al., 2009), apricots 

(Sarsilmaz et al., 2000; Togrul and Pehlivan 2002), figs (Doymaz, 2005), pumpkins (Sacilik, 2007)), apples 

(Aktas et al., 2009), pineapples (Bala et al., 2003), plums (Tarhan 2007), strawberries (El-Beltagy et al., 2007), 

grapes (Yaldiz, 2001; Jairaj et al., 2009; Pangavhane and Sawhney, 2002; Fadhel et al., 2005; Barnwal and 

Tiwari, 2008) and mulberries (Akbulut and Durmus, 2010; lemons, usually sliced, (Chen et al., 2005) and the 

peel of prickly pears (Lahsasni et al., 2004). In multiple locations, many herbs and spices are, as a matter of 

course, dried in the sun or in solar dryers (Muller et al., 1989; Janjai and Tung, 2005; Prasad et al., 2006; 

Janjai et al., 2008; Kumar and Tiwari 2006; Arslan and Ozcan, 2008) as are chillis (Hossain et al., 2005; 

Hossain and Bala, 2007; Banout, 2011) and green (Akpinar and Bicer, 2008) and red (Kooli et al., 2007) 
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peppers. Among the dried vegetables produced using solar dryers are cauliflowers (Kadam and Samuel 2006), 

coriander (Chauhan et al., 1996), onion flakes (Kumar and Tiwari, 2007) and tomatoes (Sacilik et al., 2006). 

Solar drying has been used to dry root crops, usually cut into slices, including cassava (Ekechukwu and Norton, 

1997;1998; Olufayo and Ogunkunle,1996; Koua et al., 2009) and sweet potatoes (Diamante and Munro, 1993; 

Hatamipour et al., 2007, Bechof et al., 2009). Dried seeds have been produced using solar dryers (Patil and 

Ward, 1989; Williamson et al., 2008). Solar dryers have also been used successfully for specialist high-value 

products such as coffee beans (Philips, 1965) and pistachio nuts (Midilli and, Kucuk, 2003). In addition to 

drying crops, solar drying has also been adopted for drying products as diverse as timber (Headley. 1998, 

2000; Lina et al., 2009, Taylor and Weir, 1985), fermented dairy products (Bahnasawy and Shenana, 2004) 

and fish (Fudholi, 2010). 

 

Typical drying times in solar dryers range from one to three days depending on the dryer type, the intensity 

and duration of solar radiation incident, air flow rates, drying chamber humidity, ambient humidity and the 

temperature-dependent mass transfer coefficients that determine the drying kinetics of the crop to be dried 

(Tripathy and Kumar, 2009). An air flow will continue to take-up moisture that is available at the moist surface 

of a crop until the air flow is fully saturated. The later is determined by a temperature dependent absolute 

maximum humidity. At higher temperatures, the absolute humidity is higher. So, when an air flow is heated by 

solar energy, the moisture content remains the unchanged but the relative humidity is lower so the that airflow 

is now able to take-up more moisture from a crop once it flows in the drying chamber. 

 

The optimal drying time is a trade-off between achieving; 

 

• sufficiently fast crop-throughout to make best economic use of the dryer and to, where possible, compete 

drying, preferably in one day, to obviate the need for nocturnal crop storage  

• high-quality product without excessive heating degrading the crop to give a lower market price. 

 

Drying time can be hastened by;  

 

• heating the crop by directly solar heating and/or indirectly, via a solar heated air flow, so that the moisture 

can be vapourised more readily.  

• crop pre-preparation including slicing to allow a larger crop surface area to be available to release moisture, 

break into long moisture migration paths and/or dense hydrophobic crop skins layers.  As can be seen in 

Figure 3, the effect of slicing can reduce drying times significantly.   
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Figure 3.  Effect of pre-preparation on drying times for solar drying and open-sea dryers of red peppers  

(Trim and Ko, 1982). 

 

2.1. Types of solar thermal dryer 

 

The types of solar thermal dryers commonly available are illustrated in Figures 4 and 5. 

 
Figure 4. Taxonomy of solar drying (Ekechukwu and Norton, 1999b) 
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Figure 5. Solar dryer’s classification (Ekechukwu and Norton et al, 1999a) 

 

Dryers in which crops are directly exposed to solar radiation are termed direct solar dryers. A crop is directly 

heated by sun in most cabinet solar dryers (Singh et al., 2006; Datta et al., 1988; Sharma et al., 1990) though 

indirectly heated cabinet dryers have been realised (Sreekumar et al., 2008; Goyal and Tiwari, 1999).  

 

In an indirect solar dryer, the crop is exposed to warm air from an air-heating solar collector and not directly to 

the sun.  Indirect and direct solar dryers are, broadly speaking applicable to different, but overlapping ambient 

conditions as shown indicatively in Figure 8.  It is important to note that for a given location conditions are 

changeable (El-Sebaii et al., 2002; Sharma et al., 1992; Singh et al., 2004).  
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Figure 6.  Indicative ambient conditions for direct and indirect solar dryers 

 

In a mixed mode dryer (Forson et al., 2007a; 2007b), a crop is simultaneously exposed directly to incident 

solar heat gain and a flow of solar-heated air. As fruit and vegetable crops are dried in an air flow browning 

ensues due to a combination of enzymatic and non-enzymatic browning reactions (Krokida et al., 1998). For 

different dryers, operational conditions and initial crop parameters drying method significant differences have 

been observed in the browning reactions that crop undergoes during drying. 

 

A direct solar dryer consists of an enclosure with a transparent cover and/or side panels. To enhance solar 

energy collection efficiency, the internal surfaces of the enclosure are often dark in colour. Heat generated 

from the absorption of the solar radiation within the crops as well as at the surfaces of the enclosure cause the 

removal of moisture. Direct dryers are simple to construct. Compared to open-sun drying, direct solar dryers 

are more hygienic and can heat the crops to higher temperatures. As they are normally built in quite small 

sizes, direct dryers are only intended to dry small quantities of, often high value, crops. However, without 

knowledgeable and experienced operation, slow drying rates, overheating and changes in crop colour and 

flavour can ensue due to the direct exposure to sun. In direct dryers, it can be difficult to control effectively the 

rate of moisture removal. At the start of the drying process, it is often necessary to close the outlet air holes to 

allow the temperature of air in the dryer to rise. Water evaporates from the crop and condenses on the inside 

of the transparent cover and thus reducing the amount of solar radiation transmitted to the dryer interior. This 

condition is subsequently improved by opening the outlet vents, but in turn it causes temperature inside the 

dryer to fall. A chimney as shown in Figure 7 is usually incorporated in natural convection direct dryers to 

increase the air-flow through the crop bed. 
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Figure 7. A greenhouse solar dryer incorporating a chimney (Ekechukwu and Norton, 1995). 
 

 

Figure 8. A large-scale forced convection solar dryer 
 

Indirect solar dryers are those in which the crops are placed in an enclosed drying cabinet there by being 

shielded from direct exposure to solar radiation. An indirect solar dryer basically consists of three major 

components: an air heater, which is used to raise the temperature of the drying air, a drying chamber which is 

the enclosure that accommodates the crops and a fan to convey air between them. Large-scale forced indirect 

convection solar dryers, such as that shown in Figure 8, generate the high air-flow rates required to overcome 

pressure drops through deep drying crop beds which makes them suitable for drying very large crop volumes. 

Higher solar energy collection efficiency also results generally from the consistently controlled higher air 

velocities in the solar collector. 

 
An alternative to the installation of specialist air-heating solar collectors as shown in Figure 6 is the lower cost 

fabrication of roof-integrated collectors as shown in Figure 9 or the use of roof-mounted transpired air-heating 

collectors as shown in Figure 10. 
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Figure 9. A roof-mounted air-heating solar collector and the integration of air-flow to a drying silo 

 
 
 
Figure 10. A walnut dryer constructed in California using transpired air-heating solar collector (Hollick, 1999). 

 
 
Drying is a continuous process where the moisture content, air and crop temperature and the humidity of the 

air all change simultaneously. The introduction of a fan enables more direct control of the flow rate to archive 

optimal drying, particularly in the transition from initial falling to constant drying rates, than can usually be 

achieved by the operation of flaps and louvres in natural circulation dryers. Forced convection dryers require 

a electrical or fossil fuel source of power to operate the fan. This is the most significant obstacle to their 

deployment in remote rural areas where such power has been either rarely available, unreliable and/or 

expensive. With the continuing reductions in the cost of photovoltaics, the use of a photovoltaic array to power 

a fan has become practicable. Where drying takes place over several days, the dryer needs to be designed to 

avoid nocturnal reabsorption of moisture. This can be accomplished by closing-off all air ducts with dampers. 

An alternative is to continue drying using stored energy or other fuel sources.  

 

Air heated in the collector passes through the drying chamber where the crop to be dried is placed on one or 

more porous trays. The air passes through the wet crop bed and becomes nearly saturated, thus lowering its 

temperature to nearly that of the ambient air, before it exits via a chimney. This type of dryer is used when the 

crop being dried can be damaged if it is exposed to the direct solar radiation. Many crops can be dried in 

deeper layers, therefore requiring a smaller installation area. However, natural convection indirect solar dryers 

are prone to poor performance. Since the air above the crop bed is not substantially different in temperature 

from that of the ambient air, which is also damp in humid regions, the resulting buoyancy forces, which are 

proportional to the temperature difference, are very small, and in turn often low air-flow rates. A combination 

of direct and indirect solar dryers is termed mixed mode dryers. They normally comprise indirect dryers with 

transparent drying chamber tops and/ or sides.  
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Mixed mode dryers are also suitable to drying crops to which the exposure to sunlight is considered essential 

for the required colour or flavour development in the dried product such as Arabia coffee beans. A solar dryer 

with transparent or translucent walls is designed to transmit the greatest amount of incident solar energy into 

the dryer. Surfaces inside the dryer are dark in colour to absorb that transmitted energy to heat internal 

surfaces. Energy is then transferred from the heated surfaces to the air in the dryer, primarily by convection. 

Circulated by natural or forced convection, air then transfers energy to the crop where it removes water from 

the crop to the air.  

 

Typical drying durations to safe storage moisture content can range from one to three days, again depending 

on solar radiation intensity and duration, air movement, the prevalence of lower ambient humidities, and the 

quantity and type of food. As can be seen from Figure 11 forced circulations leads to less thermal stratification 

in the dryer and generally archives uniform drying without additional operational interventions. To achieve 

similarly uniform drying in natural circulation dryers, crop trays need to usually rotated daily whilst drier crops 

in upper parts of the drying chamber are often moved to continue drying on lower racks. The crop is allowed 

to cool completely before it is stored in airtight containers. 

Figure 11. Predicted temperatures in cabinet solar dryers with natural and forced circulation (Ghaffari and 

Mehdipour, 2015) 
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2.2.  Solar dryers with fans powered by photovoltaic modules 
 
The capital cost of photovoltaic installations has reduced globally. In certain jurisdictions, their various market 

interventions have been made to encourage the use of photovoltaics as a contribution to the decarbonisation 

of electricity production. A photovoltaic array can be used to power the fan in a forced circulation solar dryer 

as shown in Figure 12 enabling (i) autonomy in use that avoids external recurrent energy costs and (ii) the 

extension of the use of forced circulation dryers to remote or portable uses. 

 

 

 

Figure 12. A forced circulation dryer with a photovoltaic powered fan 

 

Electricity provided by a photovoltaic array can be used to power vacuum dryers where heat is supplied by 

contact conduction, radiation or microwaves and the vapour produced removed by a vacuum system. Similarly, 

electricity from a photovoltaic array can be used to provide the refrigeration required for the drying technique 

where the solvent is frozen prior to drying to be subsequently sublimed (that is, passed to the gas phase 

directly from the solid phase) below the melting point of the solvent. Such freeze drying is often carried out 

under high vacuum to allow drying to proceed swiftly. As this process maintains complex internal solide 

structures, low density, highly porous products are produced able to regain moisture rapidly. Freeze drying is 

one of the best methods of retaining the initial properties of biological materials such as foods. Freeze drying 

is becoming used increasingly to preserve foods for which it is important to keep intact protein quality, vitamins 

and other bioactive compounds.  

 
3. Conclusion 

 

Solar dryers can include a wide range of modes of air-flow, arrangement via which solar energy is harvested 

to accommodate the distinctive process optimisations required for the production of high quality different corps. 

There are, however, a generic set of attributes that are distinctive of specific generic solar dryer types as 

illustrated in Figure 13. 
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Figure 13.  Groupings of dryer attributes with generic dryer type 

 

Unlike water heating and electricity generation, drying crops is a direct and longstanding use of solar energy. 

Nevertheless, as shown in Figure 14, careful consideration of the crop characteristics and ambient conditions 

must inform dryer design to achieve economic viability.  Extensive examples of the use of solar drying now 

exist each with a distinct characteristic depending of the crop and climate.  New developments are informed 

increasingly by the experience of operational practice.  

 

 

Figure 14. Factors determining the economic viability of a solar dryer (Tomar et al, 2017) 
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