23 research outputs found

    Multiple Wolbachia strains provide comparative levels of protection against dengue virus infection in Aedes aegypti.

    Get PDF
    The insect bacterium Wolbachia pipientis is being introgressed into Aedes aegypti populations as an intervention against the transmission of medically important arboviruses. Here we compare Ae. aegypti mosquitoes infected with wMelCS or wAlbB to the widely used wMel Wolbachia strain on an Australian nuclear genetic background for their susceptibility to infection by dengue virus (DENV) genotypes spanning all four serotypes. All Wolbachia-infected mosquitoes were more resistant to intrathoracic DENV challenge than their wildtype counterparts. Blocking of DENV replication was greatest by wMelCS. Conversely, wAlbB-infected mosquitoes were more susceptible to whole body infection than wMel and wMelCS. We extended these findings via mosquito oral feeding experiments, using viremic blood from 36 acute, hospitalised dengue cases in Vietnam, additionally including wMel and wildtype mosquitoes on a Vietnamese nuclear genetic background. As above, wAlbB was less effective at blocking DENV replication in the abdomen compared to wMel and wMelCS. The transmission potential of all Wolbachia-infected mosquito lines (measured by the presence/absence of infectious DENV in mosquito saliva) after 14 days, was significantly reduced compared to their wildtype counterparts, and lowest for wMelCS and wAlbB. These data support the use of wAlbB and wMelCS strains for introgression field trials and the biocontrol of DENV transmission. Furthermore, despite observing significant differences in transmission potential between wildtype mosquitoes from Australia and Vietnam, no difference was observed between wMel-infected mosquitoes from each background suggesting that Wolbachia may override any underlying variation in DENV transmission potential

    wMel Wolbachia genome remains stable after 7 years in Australian Aedes aegypti field populations.

    Get PDF
    Infection of wMel Wolbachia in Aedes aegypti imparts two signature features that enable its application for biocontrol of dengue. First, the susceptibility of mosquitoes to viruses such as dengue and Zika is reduced. Second, a reproductive manipulation is caused that enables wMel introgression into wild-type mosquito populations. The long-term success of this method relies, in part, on evolution of the wMel genome not compromising the critical features that make it an attractive biocontrol tool. This study compared the wMel Wolbachia genome at the time of initial releases and 1-7 years post-release in Cairns, Australia. Our results show the wMel genome remains highly conserved up to 7 years post-release in gene sequence, content, synteny and structure. This work suggests the wMel genome is stable in its new mosquito host and, therefore, provides reassurance on the potential for wMel to deliver long-term public-health impacts

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

    Get PDF
    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysis.

    Get PDF
    Background: Molecular diagnostics are considered the most promising route to achievement of rapid, universal drug susceptibility testing for Mycobacterium tuberculosis complex (MTBC). We aimed to generate a WHO-endorsed catalogue of mutations to serve as a global standard for interpreting molecular information for drug resistance prediction. Methods: In this systematic analysis, we used a candidate gene approach to identify mutations associated with resistance or consistent with susceptibility for 13 WHO-endorsed antituberculosis drugs. We collected existing worldwide MTBC whole-genome sequencing data and phenotypic data from academic groups and consortia, reference laboratories, public health organisations, and published literature. We categorised phenotypes as follows: methods and critical concentrations currently endorsed by WHO (category 1); critical concentrations previously endorsed by WHO for those methods (category 2); methods or critical concentrations not currently endorsed by WHO (category 3). For each mutation, we used a contingency table of binary phenotypes and presence or absence of the mutation to compute positive predictive value, and we used Fisher's exact tests to generate odds ratios and Benjamini-Hochberg corrected p values. Mutations were graded as associated with resistance if present in at least five isolates, if the odds ratio was more than 1 with a statistically significant corrected p value, and if the lower bound of the 95% CI on the positive predictive value for phenotypic resistance was greater than 25%. A series of expert rules were applied for final confidence grading of each mutation. Findings: We analysed 41 137 MTBC isolates with phenotypic and whole-genome sequencing data from 45 countries. 38 215 MTBC isolates passed quality control steps and were included in the final analysis. 15 667 associations were computed for 13 211 unique mutations linked to one or more drugs. 1149 (7·3%) of 15 667 mutations were classified as associated with phenotypic resistance and 107 (0·7%) were deemed consistent with susceptibility. For rifampicin, isoniazid, ethambutol, fluoroquinolones, and streptomycin, the mutations' pooled sensitivity was more than 80%. Specificity was over 95% for all drugs except ethionamide (91·4%), moxifloxacin (91·6%) and ethambutol (93·3%). Only two resistance mutations were identified for bedaquiline, delamanid, clofazimine, and linezolid as prevalence of phenotypic resistance was low for these drugs. Interpretation: We present the first WHO-endorsed catalogue of molecular targets for MTBC drug susceptibility testing, which is intended to provide a global standard for resistance interpretation. The existence of this catalogue should encourage the implementation of molecular diagnostics by national tuberculosis programmes. Funding: Unitaid, Wellcome Trust, UK Medical Research Council, and Bill and Melinda Gates Foundation

    The role of autophagy and lipids in mouse Norovirus replication

    Get PDF
    © 2016 Dr. Tanya Beth O'DonnellHuman Norovirus (HuNoV) belongs to the Caliciviridae family and is the foremost cause of non-bacterial gastroenteritis cases worldwide. HuNoV is prevalent in developed and developing countries and is responsible for significant numbers of morbidity and mortalities each year. Despite the presence of Norovirus (NoV) in communities there is no vaccine or antiviral treatments yet available to ease this burden. This is attributed to the lack of suitable culture systems or animal models available for HuNoV. In 2003 however, a novel mouse Norovirus (MNV) was identified from immunodeficient laboratory mice which has since been used as a model for HuNoV and has provided much insight into mechanisms of NoV replication and pathogenesis. We investigated the impact of autophagy on MNV replication and found that viral infection induces this cellular process but manipulates it in such a way that inhibits the final maturation and degradation of autophagosomes. Through chemical modulation we found that autophagy appears to be an antiviral response as inhibiting the process increased viral replication. We also show that PI4P and PI4KIIIα are required for MNV replication and MNV most likely utilises its non-structural proteins to recruit these lipids and host factors to sites of replication. Finally, this study investigated whether cholesterol and the PI4P/cholesterol counter flux was required for MNV replication. We showed that cholesterol does not appear to play a role in MNV replication as inhibition of cholesterol synthesis or OSBP had no detrimental effect on replication

    Mouse Norovirus infection promotes autophagy induction to facilitate replication but prevents final autophagosome maturation

    No full text
    Autophagy is a cellular process used to eliminate intracellular pathogens. Many viruses however are able to manipulate this cellular process for their own advantage. Here we demonstrate that Mouse Norovirus (MNV) infection induces autophagy but does not appear to utilise the autophagosomal membrane for establishment and formation of the viral replication complex. We have observed that MNV infection results in lipidation and recruitment of LC3 to the autophagosome membrane but prevents subsequent fusion of the autophagosomes with lysosomes, as SQSTM1 (an autophagy receptor) accumulates and Lysosome-Associated Membrane Protein1 is sequestered to the MNV replication complex (RC) rather than to autophagosomes. We have additionally observed that chemical modulation of autophagy differentially affects MNV replication. From this study we can conclude that MNV infection induces autophagy, however suppresses the final maturation step of this response, indicating that autophagy induction contributes to MNV replication independently of RC biogenesis

    Effect of neuraminidase inhibitor (oseltamivir) treatment on outcome of hospitalised influenza patients, surveillance data from 11 EU countries, 2010 to 2020.

    Get PDF
    BackgroundTimely treatment with neuraminidase inhibitors (NAI) can reduce severe outcomes in influenza patients.AimWe assessed the impact of antiviral treatment on in-hospital deaths of laboratory-confirmed influenza patients in 11 European Union countries from 2010/11 to 2019/20.MethodsCase-based surveillance data from hospitalised patients with known age, sex, outcome, ward, vaccination status, timing of antiviral treatment, and hospitalisation were obtained. A mixed effect logistic regression model using country as random intercept was applied to estimate the adjusted odds ratio (aOR) for in-hospital death in patients treated with NAIs vs not treated.ResultsOf 19,937 patients, 31% received NAIs within 48 hours of hospital admission. Older age (60-79 years aOR 3.0, 95% CI: 2.4-3.8; 80 years 8.3 (6.6-10.5)) and intensive care unit admission (3.8, 95% CI: 3.4-4.2) increased risk of dying, while early hospital admission after symptom onset decreased risk (aOR 0.91, 95% CI: 0.90-0.93). NAI treatment initiation within 48 hours and up to 7 days reduced risk of dying (0-48 hours aOR 0.51, 95% CI: 0.45-0.59; 3-4 days 0.59 (0.51-0.67); 5-7 days 0.64 (0.56-0.74)), in particular in patients 40 years and older (e.g. treatment within 48 hours: 40-59 years aOR 0.43, 95% CI: 0.28-0.66; 60-79 years 0.50 (0.39-0.63); ≥80 years 0.51 (0.42-0.63)).ConclusionNAI treatment given within 48 hours and possibly up to 7 days after symptom onset reduced risk of in-hospital death. NAI treatment should be considered in older patients to prevent severe&nbsp;outcomes.</p
    corecore