169 research outputs found

    DCE-MRI biomarkers of tumour heterogeneity predict CRC liver metastasis shrinkage following bevacizumab and FOLFOX-6

    Get PDF
    Background: There is limited evidence that imaging biomarkers can predict subsequent response to therapy. Such prognostic and/or predictive biomarkers would facilitate development of personalised medicine. We hypothesised that pre-treatment measurement of the heterogeneity of tumour vascular enhancement could predict clinical outcome following combination anti-angiogenic and cytotoxic chemotherapy in colorectal cancer (CRC) liver metastases. Methods: Ten patients with 26 CRC liver metastases had two dynamic contrast-enhanced MRI (DCE-MRI) examinations before starting first-line bevacizumab and FOLFOX-6. Pre-treatment biomarkers of tumour microvasculature were computed and a regression analysis was performed against the post-treatment change in tumour volume after five cycles of therapy. The ability of the resulting linear model to predict tumour shrinkage was evaluated using leave-one-out validation. Robustness to inter-visit variation was investigated using data from a second baseline scan. Results: In all, 86% of the variance in post-treatment tumour shrinkage was explained by the median extravascular extracellular volume (ve), tumour enhancing fraction (EF), and microvascular uniformity (assessed with the fractal measure box dimension, d0) (R2=0.86, P<0.00005). Other variables, including baseline volume were not statistically significant. Median prediction error was 12%. Equivalent results were obtained from the second scan. Conclusion: Traditional image analyses may over-simplify tumour biology. Measuring microvascular heterogeneity may yield important prognostic and/or predictive biomarkers

    The use of a smartphone app and an activity tracker to promote physical activity in the management of chronic obstructive pulmonary disease : randomized controlled feasibility study

    Get PDF
    Background: Chronic obstructive pulmonary disease (COPD) is highly prevalent and significantly affects the daily functioning of patients. Self-management strategies, including increasing physical activity, can help people with COPD have better health and a better quality of life. Digital mobile health (mHealth) techniques have the potential to aid the delivery of self-management interventions for COPD. We developed an mHealth intervention (Self-Management supported by Assistive, Rehabilitative, and Telehealth technologies-COPD [SMART-COPD]), delivered via a smartphone app and an activity tracker, to help people with COPD maintain (or increase) physical activity after undertaking pulmonary rehabilitation (PR). Objective: This study aimed to determine the feasibility and acceptability of using the SMART-COPD intervention for the self-management of physical activity and to explore the feasibility of conducting a future randomized controlled trial (RCT) to investigate its effectiveness. Methods: We conducted a randomized feasibility study. A total of 30 participants with COPD were randomly allocated to receive the SMART-COPD intervention (n=19) or control (n=11). Participants used SMART-COPD throughout PR and for 8 weeks afterward (ie, maintenance) to set physical activity goals and monitor their progress. Questionnaire-based and physical activity–based outcome measures were taken at baseline, the end of PR, and the end of maintenance. Participants, and health care professionals involved in PR delivery, were interviewed about their experiences with the technology. Results: Overall, 47% (14/30) of participants withdrew from the study. Difficulty in using the technology was a common reason for withdrawal. Participants who completed the study had better baseline health and more prior experience with digital technology, compared with participants who withdrew. Participants who completed the study were generally positive about the technology and found it easy to use. Some participants felt their health had benefitted from using the technology and that it assisted them in achieving physical activity goals. Activity tracking and self-reporting were both found to be problematic as outcome measures of physical activity for this study. There was dissatisfaction among some control group members regarding their allocation. Conclusions: mHealth shows promise in helping people with COPD self-manage their physical activity levels. mHealth interventions for COPD self-management may be more acceptable to people with prior experience of using digital technology and may be more beneficial if used at an earlier stage of COPD. Simplicity and usability were more important for engagement with the SMART-COPD intervention than personalization; therefore, the intervention should be simplified for future use. Future evaluation will require consideration of individual factors and their effect on mHealth efficacy and use; within-subject comparison of step count values; and an opportunity for control group participants to use the intervention if an RCT were to be carried out. Sample size calculations for a future evaluation would need to consider the high dropout rates

    eLine10k: A high dynamic range front-end ASIC for LCLS detectors

    Full text link
    Abstract Not Provide

    Spallation reactions. A successful interplay between modeling and applications

    Get PDF
    The spallation reactions are a type of nuclear reaction which occur in space by interaction of the cosmic rays with interstellar bodies. The first spallation reactions induced with an accelerator took place in 1947 at the Berkeley cyclotron (University of California) with 200 MeV deuterons and 400 MeV alpha beams. They highlighted the multiple emission of neutrons and charged particles and the production of a large number of residual nuclei far different from the target nuclei. The same year R. Serber describes the reaction in two steps: a first and fast one with high-energy particle emission leading to an excited remnant nucleus, and a second one, much slower, the de-excitation of the remnant. In 2010 IAEA organized a worskhop to present the results of the most widely used spallation codes within a benchmark of spallation models. If one of the goals was to understand the deficiencies, if any, in each code, one remarkable outcome points out the overall high-quality level of some models and so the great improvements achieved since Serber. Particle transport codes can then rely on such spallation models to treat the reactions between a light particle and an atomic nucleus with energies spanning from few tens of MeV up to some GeV. An overview of the spallation reactions modeling is presented in order to point out the incomparable contribution of models based on basic physics to numerous applications where such reactions occur. Validations or benchmarks, which are necessary steps in the improvement process, are also addressed, as well as the potential future domains of development. Spallation reactions modeling is a representative case of continuous studies aiming at understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix

    Psychology and aggression

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68264/2/10.1177_002200275900300301.pd

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance
    corecore