98 research outputs found

    Chemical effect on muonic atom formation through muon transfer reaction in benzene and cyclohexane samples

    Get PDF
    To investigate the chemical effect on the muon capture process through a muon transfer reaction from a muonic hydrogen atom, the formation rate of muonic carbon atoms is measured for benzene and cyclohexane molecules in liquid samples. The muon transfer rate to carbon atoms of the benzene molecule is higher than that to the carbon atoms of the cyclohexane molecule. Such a deviation has never been observed among those molecules for gas samples. This may be because the transfers occur from the excited states of muonic hydrogen atoms in the liquid system, whereas in the gas system, all the transfers occur from the 1s (ground) state of muon hydrogen atoms. The muonic hydrogen atoms in the excited states have a larger radius than those in the 1s state and are therefore considered to be affected by the steric hindrance of the molecular structure. This indicates that the excited states of muonic hydrogen atoms contribute significantly to the chemical effects on the muon transfer reaction

    First determination of Pu isotopes (239Pu, 240Pu and 241Pu) in radioactive particles derived from Fukushima Daiichi Nuclear Power Plant accident

    Get PDF
    Radioactive particles were released into the environment during the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. Many studies have been conducted to elucidate the chemical composition of released radioactive particles in order to understand their formation process. However, whether radioactive particles contain nuclear fuel radionuclides remains to be investigated. Here, we report the first determination of Pu isotopes in radioactive particles. To determine the Pu isotopes (239Pu, 240Pu and 241Pu) in radioactive particles derived from the FDNPP accident which were free from the influence of global fallout, radiochemical analysis and inductively coupled plasma-mass spectrometry measurements were conducted. Radioactive particles derived from unit 1 and unit 2 or 3 were analyzed. For the radioactive particles derived from unit 1, activities of 239+240Pu and 241Pu were (1.70-7.06)×10-5 Bq and (4.10-8.10)×10-3 Bq, respectively and atom ratios of 240Pu/239Pu and 241Pu/239Pu were 0.330-0.415 and 0.162-0.178, respectively. These ratios were consistent with the simulation results from ORIGEN code and measurements from various environmental samples. In contrast, Pu was not detected in the radioactive particles derived from unit 2 or 3. The difference in Pu contents is clear evidence towards different formation processes of radioactive particles, and detailed formation processes can be investigated from Pu analysis

    Atmospheric resuspension of insoluble radioactive cesium-bearing particles found in the difficult-to-return area in Fukushima

    Get PDF
    The deposition of insoluble radiocesium-bearing microparticles (CsMPs), which were released from the Fukushima Daiichi Nuclear Power Plant (F1NPP) accident in March 2011, has resulted in the widespread contamination of eastern Japan. Obviously, these deposited insoluble CsMPs may become the secondary contamination sources by atmospheric migration or other environmental transferring process; however, the understanding of the transport mechanism remains non-elucidation, and the relevant evidence has not been directly provided. This study, for the first time, provides the direct evidence for the resuspension of these insoluble CsMPs to the atmosphere from (1) proximity of ¹³⁷Cs radioactivity and resemblance of the morphology and the elemental compositions of CsMPs in the samples of soil and aerosol derived from the same sampling site, (2) the special characteristics of the resuspended CsMPs of which the ratios of Na/Si, K/Si and/or Cs/Si were smaller than those from the initially released CsMPs collected at either long distance or near F1NPP, which can be ascribed to the slowly natural corrosion of CsMPs by the loss of the small amount of soluble contents in CsMPs, and (3) high CsMPs concentration of 10 granules/g in the surface soil of our sampling site and high resuspension frequency of CsMPs in spring when predominant suspended particles were soil dust. Specifically, 15 single CsMPs were successfully isolated from the aerosol filters collected by unmanned high-volume air samplers at a severely polluted area in Fukushima Prefecture, about 25 km away from F1NPP, from January 2015 to September 2019. The mean diameter of these CsMPs was 1.8 ± 0.5 μm, and the average ¹³⁷Cs radioactivity was 0.35 ± 0.23 Bq/granule. The contribution rate of the resuspended CsMPs to the atmospheric radiocesium was estimated from the ratio of ¹³⁷Cs radioactivity of a single CsMP to that of the aerosol filter to be of 23.9 ± 15.3%. There has been no considerable decreasing trend in the annual CsMP resuspension frequency

    Multipole and superconducting state in PrIr2Zn20 probed by muon spin relaxation

    Get PDF
    We performed muon spin rotation and relaxation (mu SR) measurements in the caged-structure heavy-fermion system PrIr2Zn20 to elucidate its magnetic and superconducting properties. Temperature-independent mu SR spectra were observed below 1 K, indicating that the phase transition at 0.11 K is of a nonmagnetic origin, most probably pure quadrupole ordering. In the superconducting phase, no sign of unconventional superconductivity, such as superconductivity with broken time-reversal symmetry, was seen below T-c = 0.05 K. We also observed spontaneous muon spin precession in zero field in the paramagnetic phase below 15 K, suggesting that unusual coupling between Pr-141 nuclei and muons is realized in PrIr2Zn20

    Association between periodontal condition and kidney dysfunction in Japanese adults : A cross‐sectional study

    Get PDF
    Recent studies have demonstrated that chronic kidney disease (CKD) may be associated with the progression of periodontal disease. Diabetes mellitus (DM) is a major risk factor for CKD. The objective of this study was to clarify the relationship between periodontal condition and kidney dysfunction in patients who had kidney failure with or without DM. One hundred sixty‐four patients with kidney dysfunction were enrolled (male: N = 105; female: N = 59), and the relationship between periodontal condition and kidney dysfunction was analyzed in a cross‐sectional study. The subjects were divided into three groups: (a) patients with DM, (b) dialysis patients with nephropathy due to various kidney diseases, and (c) dialysis patient with nephropathy due to DM (diabetic nephropathy). Then, the effect of DM on the periodontal condition was analyzed. The patients were also stratified by CKD stage (into G1–G5) using the estimated glomerular filtration rate (eGFR), and the G5 group was divided in patients with or without DM. Correlations between eGFR and parameters of periodontal condition were calculated in patients from G1 to G4. The number of missing teeth was significantly higher in dialysis patients with diabetic nephropathy than in patients with DM, whereas alveolar bone loss did not show a significant difference among the three groups. In addition, the G5 patients with DM had a significantly higher number of missing teeth than the other CKD groups, whereas alveolar bone loss did not show a significant difference. In G5 patients with DM, Community Periodontal Index and Oral Hygiene Index scores were significantly higher than in G1‐4 patients with DM. There was a significant negative correlation between eGFR and the number of missing teeth. Patients with diabetic nephropathy have a higher rate of periodontal problems such as missing teeth in Japanese adults

    Utility of immune checkpoint inhibitors in non-small-cell lung cancer patients with poor performance status

    Get PDF
    Most clinical trials of non-small-cell lung cancer (NSCLC) exclude patients with poor ECOG performance status (PS). Thus, the efficacy of immune checkpoint inhibitors (ICIs) in patients with poor PS remains unclear. Herein, we used data from a retrospective cohort to assess the potential clinical benefits of ICIs in NSCLC patients with poor PS. Data from NSCLC patients who received ICI monotherapy at 9 institutions between December 2015 and May 2018 were retrospectively analyzed. After excluding 4 patients who lacked PS data, a total of 527 ICI-treated patients, including 79 patients with PS 2 or higher, were used for our analyses. The progression-free survival (PFS) and overall survival (OS) of patients with PS 2 or higher were significantly shorter compared with those of PS 0-1 patients (median PFS, 4.1 vs 2.0 months;P < .001 and median OS, 17.4 vs 4.0 months;P < .001). Among NSCLC patients with programmed cell death protein-ligand 1 (PD-L1) expression of 50% or higher who were treated with pembrolizumab as first-line therapy, the median PFS times of patients with PS 2 and 0-1 were 7.3 and 8.1 months, respectively. There was no significant difference in PFS between patients with PS 2 and 0-1 (P = .321). Although poor PS was significantly associated with worse outcomes in NSCLC patients treated with ICIs, pembrolizumab as a first-line treatment in NSCLC patients expressing high levels of PD-L1 could provide a clinical benefit, even in patients with PS 2

    The seasonal variations of atmospheric 134,137Cs activity and possible host particles for their resuspension in the contaminated areas of Tsushima and Yamakiya, Fukushima, Japan

    Get PDF
    A large quantity of radionuclides was released by the Fukushima Daiichi Nuclear Power Plant accident in March 2011, and those deposited on ground and vegetation could return to the atmosphere through resuspension processes. Although the resuspension has been proposed to occur with wind blow, biomass burning, ecosystem activities, etc., the dominant process in contaminated areas of Fukushima is not fully understood. We have examined the resuspension process of radiocesium (134,137Cs) based on long-term measurements of the atmospheric concentration of radiocesium activity (the radiocesium concentration) at four sites in the contaminated areas of Fukushima as well as the aerosol characteristic observations by scanning electron microscopy (SEM) and the measurement of the biomass burning tracer, levoglucosan.The radiocesium concentrations at all sites showed a similar seasonal variation: low from winter to early spring and high from late spring to early autumn. In late spring, they showed positive peaks that coincided with the wind speed peaks. However, in summer and autumn, they were correlated positively with atmospheric temperature but negatively with wind speed. These results differed from previous studies based on data at urban sites. The difference of radiocesium concentrations at two sites, which are located within a 1 km range but have different degrees of surface contamination, was large from winter to late spring and small in summer and autumn, indicating that resuspension occurs locally and/or that atmospheric radiocesium was not well mixed in winter/spring, and it was opposite in summer/autumn. These results suggest that the resuspension processes and the host particles of the radiocesium resuspension changed seasonally. The SEM analyses showed that the dominant coarse particles in summer and autumn were organic ones, such as pollen, spores, and microorganisms. Biological activities in forest ecosystems can contribute considerably to the radiocesium resuspension in these seasons. During winter and spring, soil, mineral, and vegetation debris were predominant coarse particles in the atmosphere, and the radiocesium resuspension in these seasons can be attributed to the wind blow of these particles. Any proofs that biomass burning had a significant impact on atmospheric radiocesium were not found in the present study

    Characterization of the novel mutant A78T-HERG from a long QT syndrome type 2 patient: Instability of the mutant protein and stabilization by heat shock factor 1

    Get PDF
    Background:The human ether-a-go-go-related gene (HERG) encodes the α-subunit of rapidly activating delayed-rectifier potassium channels. Mutations in this gene cause long QT syndrome type 2 (LQT2). In most cases, mutations reduce the stability of the channel protein, which can be restored by heat shock (HS). Methods: We identified the novel mutant A78T-HERG in a patient with LQT2. The purpose of the current study was to characterize this mutant protein and test whether HS and heat shock factors (HSFs) could stabilize the mutant protein. A78T-HERG and wild-type HERG (WT-HERG) were expressed in HEK293 cells and analyzed by immunoblotting, immunoprecipitation, immunofluorescence, and whole-cell patch clamping. Results: When expressed in HEK293 cells, WT-HERG gave rise to immature and mature forms of the protein at 135 and 155 kDa, respectively. A78T-HERG gave rise only to the immature form, which was heavily ubiquitinated. The proteasome inhibitor MG132 increased the expression of immature A78T-HERG and increased both the immature and mature forms of WT-HERG. WT-HERG, but not A78T-HERG, was expressed on the plasma membrane. In whole-cell patch clamping experiments, depolarizing pulses evoked E4031-sensitive HERG channel currents in cells transfected with WT-HERG, but not in cells transfected with A78T-HERG. The A78V mutant, but not A78G mutant, remained in the immature form similarly to A78T. Maturation of the A78T-HERG protein was facilitated by HS, expression of HSF-1, or exposure to geranyl geranyl acetone. Conclusions: A78T-HERG was characterized by protein instability and reduced expression on the plasma membrane. The stability of the mutant was partially restored by HSF-1, indicating that HSF-1 is a target for the treatment for LQT2 caused by the A78T mutation in HERG

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    corecore