3 research outputs found

    How can we get close to zero? The potential contribution of biomedical prevention and the investment framework towards an effective response to HIV.

    Get PDF
    BACKGROUND: In 2011 an Investment Framework was proposed that described how the scale-up of key HIV interventions could dramatically reduce new HIV infections and deaths in low and middle income countries by 2015. This framework included ambitious coverage goals for prevention and treatment services resulting in a reduction of new HIV infections by more than half. However, it also estimated a leveling in the number of new infections at about 1 million annually after 2015. METHODS: We modeled how the response to AIDS can be further expanded by scaling up antiretroviral treatment (ART) within the framework provided by the 2013 WHO treatment guidelines. We further explored the potential contributions of new prevention technologies: 'Test and Treat', pre-exposure prophylaxis and an HIV vaccine. FINDINGS: Immediate aggressive scale up of existing approaches including the 2013 WHO guidelines could reduce new infections by 80%. A 'Test and Treat' approach could further reduce new infections. This could be further enhanced by a future highly effective pre-exposure prophylaxis and an HIV vaccine, so that a combination of all four approaches could reduce new infections to as low as 80,000 per year by 2050 and annual AIDS deaths to 260,000. INTERPRETATION: In a set of ambitious scenarios, we find that immediate implementation of the 2013 WHO antiretroviral therapy guidelines could reduce new HIV infections by 80%. Further reductions may be achieved by moving to a 'Test and Treat' approach, and eventually by adding a highly effective pre-exposure prophylaxis and an HIV vaccine, if they become available

    Biomarkers of Nutrition for Development (BOND)—Iron Review

    Get PDF
    This is the fifth in the series of reviews developed as part of the Biomarkers of Nutrition for Development (BOND) program. The BOND Iron Expert Panel (I-EP) reviewed the extant knowledge regarding iron biology, public health implications, and the relative usefulness of currently available biomarkers of iron status from deficiency to overload. Approaches to assessing intake, including bioavailability, are also covered. The report also covers technical and laboratory considerations for the use of available biomarkers of iron status, and concludes with a description of research priorities along with a brief discussion of new biomarkers with potential for use across the spectrum of activities related to the study of iron in human health. The I-EP concluded that current iron biomarkers are reliable for accurately assessing many aspects of iron nutrition. However, a clear distinction is made between the relative strengths of biomarkers to assess hematological consequences of iron deficiency versus other putative functional outcomes, particularly the relationship between maternal and fetal iron status during pregnancy, birth outcomes, and infant cognitive, motor and emotional development. The I-EP also highlighted the importance of considering the confounding effects of inflammation and infection on the interpretation of iron biomarker results, as well as the impact of life stage. Finally, alternative approaches to the evaluation of the risk for nutritional iron overload at the population level are presented, because the currently designated upper limits for the biomarker generally employed (serum ferritin) may not differentiate between true iron overload and the effects of subclinical inflammation

    Bibliography

    No full text
    corecore