145 research outputs found
Increasing Power by Sharing Information from Genetic Background and Treatment in Clustering of Gene Expression Time Series
هذا البحث يطوير طريقة تجميع جديدة تسمح لكل مجموعة لتكون بارامتريسد وفقا لما إذا كان سلوك الجينات عبر الظروف مترابطة أو غير مترابطة. من خلال تحديد الارتباط بين هذه الجينات، والمزيد من المعلومات هو كسب داخل المجموعة حول كيفية الجينات المترابطة. التصلب الجانبي الضموري (ألس) هو اضطراب عصبي لا رجعة فيه يقتل الخلايا العصبية الحركية ويؤدي إلى الموت في غضون 2-3 سنوات من بداية الأعراض. سرعة التقدم لمرضى مختلفة غير متجانسة مع تباين كبير. أظهرت الفئران المعدلة وراثيا SOD1G93A من خلفيات مختلفة (129Sv و C57) الاختلافات الظواهر ثابتة لتطور المرض. التسلسل الهرمي للعمليات الغوسية المستخدمة لتشكيل نموذجية محددة وجينات محددة التباين المشترك بين الجينات. وأظهرت هذه الدراسة حول العثور على بعض ملامح التعبير الجيني هامة ومجموعات من تعبيرات الجينات المرتبطة أو المشتركة معا من أربع مجموعات من البيانات (SOD1G93A و نتغ من 129Sv و C57 الخلفيات). وتظهر دراستنا فعالية تبادل المعلومات بين المكررات وظروف نموذج مختلفة عند النمذجة الجينات سلسلة الوقت التعبير. المزيد من الجينات إثراء تحليل النتيجة وتحليل مسار الأنطولوجيا من بعض المجموعات المحددة لمجموعة معينة قد يؤدي نحو تحديد الميزات الكامنة وراء سرعة التفاضلية تطور المرض.Clustering of gene expression time series gives insight into which genes may be co-regulated, allowing us to discern the activity of pathways in a given microarray experiment. Of particular interest is how a given group of genes varies with different conditions or genetic background. This paper develops
a new clustering method that allows each cluster to be parameterised according to whether the behaviour of the genes across conditions is correlated or anti-correlated. By specifying correlation between such genes,more information is gain within the cluster about how the genes interrelate. Amyotrophic lateral sclerosis (ALS) is an irreversible neurodegenerative disorder that kills the motor neurons and results in death within 2 to 3 years from the symptom onset. Speed of progression for different patients are heterogeneous with significant variability. The SOD1G93A transgenic mice from different backgrounds (129Sv and C57) showed consistent phenotypic differences for disease progression. A hierarchy of Gaussian isused processes to model condition-specific and gene-specific temporal co-variances. This study demonstrated about finding some significant gene expression profiles and clusters of associated or co-regulated gene expressions together from four groups of data (SOD1G93A and Ntg from 129Sv and C57 backgrounds). Our study shows the effectiveness of sharing information between replicates and different model conditions when modelling gene expression time series. Further gene enrichment score analysis and ontology pathway analysis of some specified clusters for a particular group may lead toward identifying features underlying the differential speed of disease progression
Novel Role for the AnxA1-Fpr2/ALX Signaling Axis as a Key Regulator of Platelet Function to Promote Resolution of Inflammation
Background: Ischemia reperfusion injury (I/RI) is a common complication of cardiovascular diseases. Resolution of detrimental I/RI-generated prothrombotic and proinflammatory responses is essential to restore homeostasis. Platelets play a crucial part in the integration of thrombosis and inflammation. Their role as participants in the resolution of thromboinflammation is underappreciated; therefore we used pharmacological and genetic approaches, coupled with murine and clinical samples, to uncover key concepts underlying this role. Methods: Middle cerebral artery occlusion with reperfusion was performed in wild-type or annexin A1 (AnxA1) knockout (AnxA1-/-) mice. Fluorescence intravital microscopy was used to visualize cellular trafficking and to monitor light/dye-induced thrombosis. The mice were treated with vehicle, AnxA1 (3.3 mg/kg), WRW4 (1.8 mg/kg), or all 3, and the effect of AnxA1 was determined in vivo and in vitro. Results: Intravital microscopy revealed heightened platelet adherence and aggregate formation post I/RI, which were further exacerbated in AnxA1-/- mice. AnxA1 administration regulated platelet function directly (eg, via reducing thromboxane B2 and modulating phosphatidylserine expression) to promote cerebral protection post-I/RI and act as an effective preventative strategy for stroke by reducing platelet activation, aggregate formation, and cerebral thrombosis, a prerequisite for ischemic stroke. To translate these findings into a clinical setting, we show that AnxA1 plasma levels are reduced in human and murine stroke and that AnxA1 is able to act on human platelets, suppressing classic thrombin-induced inside-out signaling events (eg, Akt activation, intracellular calcium release, and Ras-associated protein 1 [Rap1] expression) to decrease IIbβ3 activation without altering its surface expression. AnxA1 also selectively modifies cell surface determinants (eg, phosphatidylserine) to promote platelet phagocytosis by neutrophils, thereby driving active resolution. (n=5-13 mice/group or 7-10 humans/group.) Conclusions: AnxA1 affords protection by altering the platelet phenotype in cerebral I/RI from propathogenic to regulatory and reducing the propensity for platelets to aggregate and cause thrombosis by affecting integrin (IIbβ3) activation, a previously unknown phenomenon. Thus, our data reveal a novel multifaceted role for AnxA1 to act both as a therapeutic and a prophylactic drug via its ability to promote endogenous proresolving, antithromboinflammatory circuits in cerebral I/RI. Collectively, these results further advance our knowledge and understanding in the field of platelet and resolution biology.Fil: Senchenkova, Elena Y.. State University of Louisiana; Estados UnidosFil: Ansari, Junaid. State University of Louisiana; Estados UnidosFil: Becker, Felix. University Hospital Muenster; AlemaniaFil: Vital, Shantel A.. State University of Louisiana; Estados UnidosFil: Al-Yafeai, Zaki. State University of Louisiana; Estados UnidosFil: Sparkenbaugh, Erica M.. University North Carolina Chapel Hill; Estados UnidosFil: Pawlinski, Rafal. University North Carolina Chapel Hill; Estados UnidosFil: Stokes, Karen Y.. State University of Louisiana; Estados UnidosFil: Carroll, Jennifer L.. State University of Louisiana; Estados UnidosFil: Dragoi, Ana-Maria. State University of Louisiana; Estados UnidosFil: Qin, Cheng Xue. Baker Heart And Diabetes Institute; AustraliaFil: Ritchie, Rebecca H.. Baker Heart And Diabetes Institute; AustraliaFil: Sun, Hai. University Hospital Muenster; AlemaniaFil: Cuellar-Saenz, Hugo H.. State University of Louisiana; Estados UnidosFil: Rubinstein Guichon, Mara Roxana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; Argentina. Columbia University; Estados UnidosFil: Han, Yiping W.. Columbia University; Estados UnidosFil: Orr, A. Wayne. University Hospital Muenster; AlemaniaFil: Perretti, Mauro. Queen Mary University Of London; Reino UnidoFil: Granger, D. Neil. State University of Louisiana; Estados UnidosFil: Gavins, Felicity N.E.. State University of Louisiana; Estados Unido
Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis
BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
Discrepancies between dimensions of interoception in autism: implications for emotion and anxiety
Emotions and affective feelings are influenced by one's internal state of bodily arousal via interoception. Autism Spectrum Conditions (ASC) are associated with difficulties in recognising others' emotions, and in regulating own emotions. We tested the hypothesis that, in people with ASC, such affective differences may arise from abnormalities in interoceptive processing. We demonstrated that individuals with ASC have reduced interoceptive accuracy (quantified using heartbeat detection tests) and exaggerated interoceptive sensibility (subjective sensitivity to internal sensations on self-report questionnaires), reflecting an impaired ability to objectively detect bodily signals alongside an over-inflated subjective perception of bodily sensations. The divergence of these two interoceptive axes can be computed as a trait prediction error. This error correlated with deficits in emotion sensitivity and occurrence of anxiety symptoms. Our results indicate an origin of emotion deficits and affective symptoms in ASC at the interface between body and mind, specifically in expectancy-driven interpretation of interoceptive information
The clinical profile and associated mortality in people with and without diabetes with Coronavirus disease 2019 on admission to acute hospital services
Introduction: To assess if in adults with COVID-19, whether those with diabetes and complications (DM+C) present with a more severe clinical profile and if that relates to increased mortality, compared to those with diabetes with no complications (DM-NC) and those without diabetes. Methods: Service-level data was used from 996 adults with laboratory confirmed COVID-19 who presented to the Queen Elizabeth Hospital Birmingham, UK, from March to June 2020. All individuals were categorized into DM+C, DM-NC, and non-diabetes groups. Physiological and laboratory measurements in the first 5 days after admission were collated and compared among groups. Cox proportional hazards regression models were used to evaluate associations between diabetes status and the risk of mortality. Results: Among the 996 individuals, 104 (10.4%) were DM+C, 295 (29.6%) DM-NC and 597 (59.9%) non-diabetes. There were 309 (31.0%) in-hospital deaths documented, 40 (4.0% of total cohort) were DM+C, 99 (9.9%) DM-NC and 170 (17.0%) non-diabetes. Individuals with DM+C were more likely to present with high anion gap/metabolic acidosis, features of renal impairment, and low albumin/lymphocyte count than those with DM-NC or those without diabetes. There was no significant difference in mortality rates among the groups: compared to individuals without diabetes, the adjusted HRs were 1.39 (95% CI 0.95–2.03, p = 0.093) and 1.18 (95% CI 0.90–1.54, p = 0.226) in DM+C and DM-C, respectively. Conclusions: Those with COVID-19 and DM+C presented with a more severe clinical and biochemical profile, but this did not associate with increased mortality in this study
25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 exert distinct effects on human skeletal muscle function and gene expression
Age-associated decline in muscle function represents a significant public health burden. Vitamin D-deficiency is also prevalent in aging subjects, and has been linked to loss of muscle mass and strength (sarcopenia), but the precise role of specific vitamin D metabolites in determining muscle phenotype and function is still unclear. To address this we quantified serum concentrations of multiple vitamin D metabolites, and assessed the impact of these metabolites on body composition/muscle function parameters, and muscle biopsy gene expression in a retrospective study of a cohort of healthy volunteers. Active serum 1,25-dihydroxyvitamin D3 (1α,25(OH)2D3), but not inactive 25-hydroxyvitamin D3 (25OHD3), correlated positively with measures of lower limb strength including power (rho = 0.42, p = 0.02), velocity (Vmax, rho = 0.40, p = 0.02) and jump height (rho = 0.36, p = 0.04). Lean mass correlated positively with 1α,25(OH)2D3 (rho = 0.47, p = 0.02), in women. Serum 25OHD3 and inactive 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) had an inverse relationship with body fat (rho = -0.30, p = 0.02 and rho = -0.33, p = 0.01, respectively). Serum 25OHD3 and 24,25(OH)2D3 were also correlated with urinary steroid metabolites, suggesting a link with glucocorticoid metabolism. PCR array analysis of 92 muscle genes identified vitamin D receptor (VDR) mRNA in all muscle biopsies, with this expression being negatively correlated with serum 25OHD3, and Vmax, and positively correlated with fat mass. Of the other 91 muscle genes analysed by PCR array, 24 were positively correlated with 25OHD3, but only 4 were correlated with active 1α,25(OH)2D3. These data show that although 25OHD3 has potent actions on muscle gene expression, the circulating concentrations of this metabolite are more closely linked to body fat mass, suggesting that 25OHD3 can influence muscle function via indirect effects on adipose tissue. By contrast, serum 1α,25(OH)2D3 has limited effects on muscle gene expression, but is associated with increased muscle strength and lean mass in women. These pleiotropic effects of the vitamin D ‘metabolome’ on muscle function indicate that future supplementation studies should not be restricted to conventional analysis of the major circulating form of vitamin D, 25OHD3
Middle East respiratory syndrome coronavirus: quantification of the extent of the epidemic, surveillance biases, and transmissibility
SummaryBackgroundThe novel Middle East respiratory syndrome coronavirus (MERS-CoV) had, as of Aug 8, 2013, caused 111 virologically confirmed or probable human cases of infection worldwide. We analysed epidemiological and genetic data to assess the extent of human infection, the performance of case detection, and the transmission potential of MERS-CoV with and without control measures.MethodsWe assembled a comprehensive database of all confirmed and probable cases from public sources and estimated the incubation period and generation time from case cluster data. Using data of numbers of visitors to the Middle East and their duration of stay, we estimated the number of symptomatic cases in the Middle East. We did independent analyses, looking at the growth in incident clusters, the growth in viral population, the reproduction number of cluster index cases, and cluster sizes to characterise the dynamical properties of the epidemic and the transmission scenario.FindingsThe estimated number of symptomatic cases up to Aug 8, 2013, is 940 (95% CI 290–2200), indicating that at least 62% of human symptomatic cases have not been detected. We find that the case-fatality ratio of primary cases detected via routine surveillance (74%; 95% CI 49–91) is biased upwards because of detection bias; the case-fatality ratio of secondary cases was 20% (7–42). Detection of milder cases (or clinical management) seemed to have improved in recent months. Analysis of human clusters indicated that chains of transmission were not self-sustaining when infection control was implemented, but that R in the absence of controls was in the range 0·8–1·3. Three independent data sources provide evidence that R cannot be much above 1, with an upper bound of 1·2–1·5.InterpretationBy showing that a slowly growing epidemic is underway either in human beings or in an animal reservoir, quantification of uncertainty in transmissibility estimates, and provision of the first estimates of the scale of the epidemic and extent of case detection biases, we provide valuable information for more informed risk assessment.FundingMedical Research Council, Bill & Melinda Gates Foundation, EU FP7, and National Institute of General Medical Sciences
Ebola Virion Attachment and Entry into Human Macrophages Profoundly Effects Early Cellular Gene Expression
Zaire ebolavirus (ZEBOV) infections are associated with high lethality in primates. ZEBOV primarily targets mononuclear phagocytes, which are activated upon infection and secrete mediators believed to trigger initial stages of pathogenesis. The characterization of the responses of target cells to ZEBOV infection may therefore not only further understanding of pathogenesis but also suggest possible points of therapeutic intervention. Gene expression profiles of primary human macrophages exposed to ZEBOV were determined using DNA microarrays and quantitative PCR to gain insight into the cellular response immediately after cell entry. Significant changes in mRNA concentrations encoding for 88 cellular proteins were observed. Most of these proteins have not yet been implicated in ZEBOV infection. Some, however, are inflammatory mediators known to be elevated during the acute phase of disease in the blood of ZEBOV-infected humans. Interestingly, the cellular response occurred within the first hour of Ebola virion exposure, i.e. prior to virus gene expression. This observation supports the hypothesis that virion binding or entry mediated by the spike glycoprotein (GP1,2) is the primary stimulus for an initial response. Indeed, ZEBOV virions, LPS, and virus-like particles consisting of only the ZEBOV matrix protein VP40 and GP1,2 (VLPVP40-GP) triggered comparable responses in macrophages, including pro-inflammatory and pro-apoptotic signals. In contrast, VLPVP40 (particles lacking GP1,2) caused an aberrant response. This suggests that GP1,2 binding to macrophages plays an important role in the immediate cellular response
Leveraging community mortality indicators to infer COVID-19 mortality and transmission dynamics in Damascus, Syria.
The COVID-19 pandemic has resulted in substantial mortality worldwide. However, to date, countries in the Middle East and Africa have reported considerably lower mortality rates than in Europe and the Americas. Motivated by reports of an overwhelmed health system, we estimate the likely under-ascertainment of COVID-19 mortality in Damascus, Syria. Using all-cause mortality data, we fit a mathematical model of COVID-19 transmission to reported mortality, estimating that 1.25% of COVID-19 deaths (sensitivity range 1.00% - 3.00%) have been reported as of 2 September 2020. By 2 September, we estimate that 4,380 (95% CI: 3,250 - 5,550) COVID-19 deaths in Damascus may have been missed, with 39.0% (95% CI: 32.5% - 45.0%) of the population in Damascus estimated to have been infected. Accounting for under-ascertainment corroborates reports of exceeded hospital bed capacity and is validated by community-uploaded obituary notifications, which confirm extensive unreported mortality in Damascus
- …