437 research outputs found
Transport coefficients, spectral functions and the lattice
Transport coefficients are determined by the slope of spectral functions of
composite operators at zero frequency. We study the spectral function relevant
for the shear viscosity for arbitrary frequencies in weakly-coupled scalar and
nonabelian gauge theories at high temperature and compute the corresponding
correlator in euclidean time. We discuss whether nonperturbative values of
transport coefficients can be extracted from euclidean lattice simulations.Comment: 25 pages with 7 eps figures, discussion improved, acknowledgement
added; to appear in JHE
Phantom Field with O(N) Symmetry in Exponential Potential
In this paper, we study the phase space of phantom model with O(\emph{N})
symmetry in exponential potential. Different from the model without O(\emph{N})
symmetry, the introduction of the symmetry leads to a lower bound on the
equation of state for the existence of stable phantom dominated attractor
phase. The reconstruction relation between the potential of O(\textit{N})
phantom system and red shift has been derived.Comment: 5 pages, 3 figures, replaced with the version to appear on Phys. Rev.
Accelerated expansion from braneworld models with variable vacuum energy
In braneworld models a variable vacuum energy may appear if the size of the
extra dimension changes during the evolution of the universe. In this scenario
the acceleration of the universe is related not only to the variation of the
cosmological term, but also to the time evolution of and, possibly, to the
variation of other fundamental "constants" as well. This is because the
expansion rate of the extra dimension appears in different contexts, notably in
expressions concerning the variation of rest mass and electric charge. We
concentrate our attention on spatially-flat, homogeneous and isotropic,
brane-universes where the matter density decreases as an inverse power of the
scale factor, similar (but at different rate) to the power law in FRW-universes
of general relativity.
We show that these braneworld cosmologies are consistent with the observed
accelerating universe and other observational requirements. In particular,
becomes constant and asymptotically in
time. Another important feature is that the models contain no "adjustable"
parameters. All the quantities, even the five-dimensional ones, can be
evaluated by means of measurements in 4D. We provide precise constrains on the
cosmological parameters and demonstrate that the "effective" equation of state
of the universe can, in principle, be determined by measurements of the
deceleration parameter alone. We give an explicit expression relating the
density parameters , and the deceleration
parameter . These results constitute concrete predictions that may help in
observations for an experimental/observational test of the model.Comment: References added, typos correcte
Transition from decelerated to accelerated cosmic expansion in braneworld universes
Braneworld theory provides a natural setting to treat, at a classical level,
the cosmological effects of vacuum energy. Non-static extra dimensions can
generally lead to a variable vacuum energy, which in turn may explain the
present accelerated cosmic expansion. We concentrate our attention in models
where the vacuum energy decreases as an inverse power law of the scale factor.
These models agree with the observed accelerating universe, while fitting
simultaneously the observational data for the density and deceleration
parameter. The redshift at which the vacuum energy can start to dominate
depends on the mass density of ordinary matter. For Omega = 0.3, the transition
from decelerated to accelerated cosmic expansion occurs at z approx 0.48 +/-
0.20, which is compatible with SNe data. We set a lower bound on the
deceleration parameter today, namely q > - 1 + 3 Omega/2, i.e., q > - 0.55 for
Omega = 0.3. The future evolution of the universe crucially depends on the time
when vacuum starts to dominate over ordinary matter. If it dominates only
recently, at an epoch z < 0.64, then the universe is accelerating today and
will continue that way forever. If vacuum dominates earlier, at z > 0.64, then
the deceleration comes back and the universe recollapses at some point in the
distant future. In the first case, quintessence and Cardassian expansion can be
formally interpreted as the low energy limit of our model, although they are
entirely different in philosophy. In the second case there is no correspondence
between these models and ours.Comment: In V2 typos are corrected and one reference is added for section 1.
To appear in General Relativity and Gravitatio
Parameterization and Reconstruction of Quasi Static Universe
We study a possibility of the fate of universe, in which there is neither the
rip singularity, which results in the disintegration of bound systems, nor the
endless expansion, instead the universe will be quasi static. We discuss the
parameterization of the corresponding evolution and the reconstruction of the
scalar field model. We find, with the parameterization consistent with the
current observation, that the current universe might arrive at a quasi static
phase after less than 20Gyr.Comment: minor changes and Refs. added, publish in EPJ
Planck-scale quintessence and the physics of structure formation
In a recent paper we considered the possibility of a scalar field providing
an explanation for the cosmic acceleration. Our model had the interesting
properties of attractor-like behavior and having its parameters of O(1) in
Planck units. Here we discuss the effect of the field on large scale structure
and CMB anisotropies. We show how some versions of our model inspired by
"brane" physics have novel features due to the fact that the scalar field has a
significant role over a wider range of redshifts than for typical "dark energy"
models. One of these features is the additional suppression of the formation of
large scale structure, as compared with cosmological constant models. In light
of the new pressures being placed on cosmological parameters (in particular
H_0) by CMB data, this added suppression allows our "brane" models to give
excellent fits to both CMB and large scale structure data.Comment: 18 pages, 12 figures, submitted to PR
Multiple CDM cosmology with string landscape features and future singularities
Multiple CDM cosmology is studied in a way that is formally a
classical analog of the Casimir effect. Such cosmology corresponds to a
time-dependent dark fluid model or, alternatively, to its scalar field
presentation, and it motivated by the string landscape picture. The future
evolution of the several dark energy models constructed within the scheme is
carefully investigated. It turns out to be almost always possible to choose the
parameters in the models so that they match the most recent and accurate
astronomical values. To this end, several universes are presented which mimick
(multiple) CDM cosmology but exhibit Little Rip, asymptotically de
Sitter, or Type I, II, III, and IV finite-time singularity behavior in the far
future, with disintegration of all bound objects in the cases of Big Rip,
Little Rip and Pseudo-Rip cosmologies.Comment: LaTeX 11 pages, 10 figure
Limits on the gravity wave contribution to microwave anisotropies
We present limits on the fraction of large angle microwave anisotropies which
could come from tensor perturbations. We use the COBE results as well as
smaller scale CMB observations, measurements of galaxy correlations, abundances
of galaxy clusters, and Lyman alpha absorption cloud statistics. Our aim is to
provide conservative limits on the tensor-to-scalar ratio for standard
inflationary models. For power-law inflation, for example, we find T/S<0.52 at
95% confidence, with a similar constraint for phi^p potentials. However, for
models with tensor amplitude unrelated to the scalar spectral index it is still
currently possible to have T/S>1.Comment: 23 pages, 7 figures, accepted for publication in Phys. Rev. D.
Calculations extended to blue spectral index, Fig. 6 added, discussion of
results expande
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Measurement of D*+/- meson production in jets from pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
This paper reports a measurement of D*+/- meson production in jets from
proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV at the
CERN Large Hadron Collider. The measurement is based on a data sample recorded
with the ATLAS detector with an integrated luminosity of 0.30 pb^-1 for jets
with transverse momentum between 25 and 70 GeV in the pseudorapidity range
|eta| < 2.5. D*+/- mesons found in jets are fully reconstructed in the decay
chain: D*+ -> D0pi+, D0 -> K-pi+, and its charge conjugate. The production rate
is found to be N(D*+/-)/N(jet) = 0.025 +/- 0.001(stat.) +/- 0.004(syst.) for
D*+/- mesons that carry a fraction z of the jet momentum in the range 0.3 < z <
1. Monte Carlo predictions fail to describe the data at small values of z, and
this is most marked at low jet transverse momentum.Comment: 10 pages plus author list (22 pages total), 5 figures, 1 table,
matches published version in Physical Review
- …
