34 research outputs found

    Effects of Galaxy Formation on Thermodynamics of the Intracluster Medium

    Get PDF
    We present detailed comparisons of the intracluster medium (ICM) in cosmological Eulerian cluster simulations with deep Chandra observations of nearby relaxed clusters. To assess the impact of galaxy formation, we compare two sets of simulations, one performed in the non-radiative regime and another with radiative cooling and several physical processes critical to various aspects of galaxy formation: star formation, metal enrichment and stellar feedback. We show that the observed ICM properties outside cluster cores are well-reproduced in the simulations that include cooling and star formation, while the non-radiative simulations predict an overall shape of the ICM profiles inconsistent with observations. In particular, we find that the ICM entropy in our runs with cooling is enhanced to the observed levels at radii as large as half of the virial radius. We also find that outside cluster cores entropy scaling with the mean ICM temperature in both simulations and Chandra observations is consistent with being self-similar within current error bars. We find that the pressure profiles of simulated clusters are also close to self-similar and exhibit little cluster-to-cluster scatter. The X-ray observable-total mass relations for our simulated sample agree with the Chandra measurements to \~10%-20% in normalization. We show that this systematic difference could be caused by the subsonic gas motions, unaccounted for in X-ray hydrostatic mass estimates. The much improved agreement of simulations and observations in the ICM profiles and scaling relations is encouraging and the existence of tight relations of X-ray observables, such as Yx, and total cluster mass and the simple redshift evolution of these relations hold promise for the use of clusters as cosmological probes.Comment: 14 pages, 6 figures. Matches version accepted to Ap

    Chandra Cluster Cosmology Project II: Samples and X-ray Data Reduction

    Full text link
    We discuss the measurements of the galaxy cluster mass functions at z=~0.05 and z=~0.5 using high-quality Chandra observations of samples derived from the ROSAT PSPC All-Sky and 400deg^2 surveys. We provide a full reference for the data analysis procedures, present updated calibration of relations between the total cluster mass and its X-ray indicators (T_X, Mgas, and Y_X) based on a subsample of low-z relaxed clusters, and present a first measurement of the evolving L_X-Mtot relation (with Mtot estimated from Y_X) obtained from a well-defined statistically complete cluster sample and with appropriate corrections for the Malmquist bias applied. Finally, we present the derived cluster mass functions, estimate the systematic uncertainties in this measurement, and discuss the calculation of the likelihood function. We confidently measure the evolution in the cluster comoving number density at a fixed mass threshold, e.g., by a factor of 5.0 +- 1.2 at M_500=2.5e14 h^-1 Msun between z=0 and 0.5. This evolution reflects the growth of density perturbations and can be used for the cosmological constraints complementing those from the distance-redshift relation.Comment: ApJ in press (Feb 10, 2009 issue); replacement to match accepted version, includes revisions in response to referee's and community comment

    Cosmology with X-ray Cluster Baryons

    Get PDF
    X-ray cluster measurements interpreted with a universal baryon/gas mass fraction can theoretically serve as a cosmological distance probe. We examine issues of cosmological sensitivity for current (e.g. Chandra X-ray Observatory, XMM-Newton) and next generation (e.g. Con-X, XEUS) observations, along with systematic uncertainties and biases. To give competitive next generation constraints on dark energy, we find that systematics will need to be controlled to better than 1% and any evolution in f_gas (and other cluster gas properties) must be calibrated so the residual uncertainty is weaker than (1+z)^{0.03}.Comment: 6 pages, 5 figures; v2: 13 pages, substantial elaboration and reordering, matches JCAP versio

    Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints

    Get PDF
    Chandra observations of large samples of galaxy clusters detected in X-rays by ROSAT provide a new, robust determination of the cluster mass functions at low and high redshifts. Statistical and systematic errors are now sufficiently small, and the redshift leverage sufficiently large for the mass function evolution to be used as a useful growth of structure based dark energy probe. In this paper, we present cosmological parameter constraints obtained from Chandra observations of 36 clusters with =0.55 derived from 400deg^2 ROSAT serendipitous survey and 49 brightest z=~0.05 clusters detected in the All-Sky Survey. Evolution of the mass function between these redshifts requires Omega_Lambda>0 with a ~5sigma significance, and constrains the dark energy equation of state parameter to w0=-1.14+-0.21, assuming constant w and flat universe. Cluster information also significantly improves constraints when combined with other methods. Fitting our cluster data jointly with the latest supernovae, WMAP, and baryonic acoustic oscillations measurements, we obtain w0=-0.991+-0.045 (stat) +-0.039 (sys), a factor of 1.5 reduction in statistical uncertainties, and nearly a factor of 2 improvement in systematics compared to constraints that can be obtained without clusters. The joint analysis of these four datasets puts a conservative upper limit on the masses of light neutrinos, Sum m_nu<0.33 eV at 95% CL. We also present updated measurements of Omega_M*h and sigma_8 from the low-redshift cluster mass function.Comment: ApJ, in press (Feb 10, 2009 issue

    Lensing and x-ray mass estimates of clusters (simulations)

    Get PDF
    We present a comparison between weak-lensing and x-ray mass estimates of a sample of numerically simulated clusters. The sample consists of the 20 most massive objects at redshift z = 0.25 and M_vir > 5 × 10^(14) M_☉ h^(−1). They were found in a cosmological simulation of volume 1 h^(−3) Gpc^3, evolved in the framework of a WMAP-7 normalized cosmology. Each cluster has been resimulated at higher resolution and with more complex gas physics. We processed it through Skylens and X-MAS to generate optical and x-ray mock observations along three orthogonal projections. The final sample consists of 60 cluster realizations. The optical simulations include lensing effects on background sources. Standard observational tools and methods of analysis are used to recover the mass profiles of each cluster projection from the mock catalogue. The resulting mass profiles from lensing and x-ray are individually compared to the input mass distributions. Given the size of our sample, we could also investigate the dependence of the results on cluster morphology, environment, temperature inhomogeneity and mass. We confirm previous results showing that lensing masses obtained from the fit of the cluster tangential shear profiles with Navarro–Frenk–White functionals are biased low by ~5–10% with a large scatter (~10–25%). We show that scatter could be reduced by optimally selecting clusters either having regular morphology or living in substructure-poor environment. The x-ray masses are biased low by a large amount (~25–35%), evidencing the presence of both non-thermal sources of pressure in the intra-cluster medium (ICM) and temperature inhomogeneity, but they show a significantly lower scatter than weak-lensing-derived masses. The x-ray mass bias grows from the inner to the outer regions of the clusters. We find that both biases are weakly correlated with the third-order power ratio, while a stronger correlation exists with the centroid shift. Finally, the x-ray bias is strongly connected with temperature inhomogeneities. Comparison with a previous analysis of simulations leads to the conclusion that the values of x-ray mass bias from simulations are still uncertain, showing dependences on the ICM physical treatment and, possibly, on the hydrodynamical scheme adopted

    Planck Intermediate Results II: Comparison of Sunyaev-Zeldovich measurements from Planck and from the Arcminute Microkelvin Imager for 11 galaxy clusters

    Get PDF
    A comparison is presented of Sunyaev-Zeldovich measurements for 11 galaxy clusters as obtained by Planck and by the ground-based interferometer, the Arcminute Microkelvin Imager. Assuming a universal spherically-symmetric Generalised Navarro, Frenk & White (GNFW) model for the cluster gas pressure profile, we jointly constrain the integrated Compton-Y parameter (Y_500) and the scale radius (theta_500) of each cluster. Our resulting constraints in the Y_500-theta_500 2D parameter space derived from the two instruments overlap significantly for eight of the clusters, although, overall, there is a tendency for AMI to find the Sunyaev-Zeldovich signal to be smaller in angular size and fainter than Planck. Significant discrepancies exist for the three remaining clusters in the sample, namely A1413, A1914, and the newly-discovered Planck cluster PLCKESZ G139.59+24.18. The robustness of the analysis of both the Planck and AMI data is demonstrated through the use of detailed simulations, which also discount confusion from residual point (radio) sources and from diffuse astrophysical foregrounds as possible explanations for the discrepancies found. For a subset of our cluster sample, we have investigated the dependence of our results on the assumed pressure profile by repeating the analysis adopting the best-fitting GNFW profile shape which best matches X-ray observations. Adopting the best-fitting profile shape from the X-ray data does not, in general, resolve the discrepancies found in this subset of five clusters. Though based on a small sample, our results suggest that the adopted GNFW model may not be sufficiently flexible to describe clusters universally.Comment: update to metadata author list onl

    Planck intermediate results. III. The relation between galaxy cluster mass and Sunyaev-Zeldovich signal

    Get PDF
    We examine the relation between the galaxy cluster mass M and Sunyaev-Zeldovich (SZ) effect signal D_A^2 Y for a sample of 19 objects for which weak lensing (WL) mass measurements obtained from Subaru Telescope data are available in the literature. Hydrostatic X-ray masses are derived from XMM-Newton archive data and the SZ effect signal is measured from Planck all-sky survey data. We find an M_WL-D_A^2 Y relation that is consistent in slope and normalisation with previous determinations using weak lensing masses; however, there is a normalisation offset with respect to previous measures based on hydrostatic X-ray mass-proxy relations. We verify that our SZ effect measurements are in excellent agreement with previous determinations from Planck data. For the present sample, the hydrostatic X-ray masses at R_500 are on average ~ 20 per cent larger than the corresponding weak lensing masses, at odds with expectations. We show that the mass discrepancy is driven by a difference in mass concentration as measured by the two methods, and, for the present sample, the mass discrepancy and difference in mass concentration is especially large for disturbed systems. The mass discrepancy is also linked to the offset in centres used by the X-ray and weak lensing analyses, which again is most important in disturbed systems. We outline several approaches that are needed to help achieve convergence in cluster mass measurement with X-ray and weak lensing observations.Comment: 19 pages, 9 figures, matches accepted versio

    Planck 2015 results. XXVII. The second Planck catalogue of Sunyaev-Zeldovich sources

    Get PDF
    We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest systematic all-sky surveyof galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data sets, and is the first SZ-selected cluster survey containing >103 confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the estimates of the SZ strength parameter Y5R500are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical, and X-ray data sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under-luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples

    Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts

    Get PDF
    We present constraints on cosmological parameters using number counts as a function of redshift for a sub-sample of 189 galaxy clusters from the Planck SZ (PSZ) catalogue. The PSZ is selected through the signature of the Sunyaev--Zeldovich (SZ) effect, and the sub-sample used here has a signal-to-noise threshold of seven, with each object confirmed as a cluster and all but one with a redshift estimate. We discuss the completeness of the sample and our construction of a likelihood analysis. Using a relation between mass MM and SZ signal YY calibrated to X-ray measurements, we derive constraints on the power spectrum amplitude σ8\sigma_8 and matter density parameter Ωm\Omega_{\mathrm{m}} in a flat Λ\LambdaCDM model. We test the robustness of our estimates and find that possible biases in the YY--MM relation and the halo mass function are larger than the statistical uncertainties from the cluster sample. Assuming the X-ray determined mass to be biased low relative to the true mass by between zero and 30%, motivated by comparison of the observed mass scaling relations to those from a set of numerical simulations, we find that σ8=0.75±0.03\sigma_8=0.75\pm 0.03, Ωm=0.29±0.02\Omega_{\mathrm{m}}=0.29\pm 0.02, and σ8(Ωm/0.27)0.3=0.764±0.025\sigma_8(\Omega_{\mathrm{m}}/0.27)^{0.3} = 0.764 \pm 0.025. The value of σ8\sigma_8 is degenerate with the mass bias; if the latter is fixed to a value of 20% we find σ8(Ωm/0.27)0.3=0.78±0.01\sigma_8(\Omega_{\mathrm{m}}/0.27)^{0.3}=0.78\pm 0.01 and a tighter one-dimensional range σ8=0.77±0.02\sigma_8=0.77\pm 0.02. We find that the larger values of σ8\sigma_8 and Ωm\Omega_{\mathrm{m}} preferred by Planck's measurements of the primary CMB anisotropies can be accommodated by a mass bias of about 40%. Alternatively, consistency with the primary CMB constraints can be achieved by inclusion of processes that suppress power on small scales relative to the Λ\LambdaCDM model, such as a component of massive neutrinos (abridged).Comment: 20 pages, accepted for publication by A&
    corecore