447 research outputs found

    The formation and evolution of binary systems. III. Low-mass binaries in the Praesepe cluster

    Full text link
    With the aim of investigating the binary population of the 700 Myr old Praesepe cluster, we have observed 149 G and K-type cluster members using adaptive optics. We detected 26 binary systems with an angular separation ranging from less than 0.08 to 3.3 arcsec (15-600 AU). After correcting for detection biases, we derive a binary frequency (BF) in the logP (days) range from 4.4 to 6.9 of 25.3 +/- 5.4%, which is similar to that of field G-type dwarfs (23.8%, Duquennoy & Mayor 1991). This result, complemented by similar ones obtained for the 2 Myr old star forming cluster IC 348 (Paper II) and the 120 Myr old Pleiades open cluster (Paper I), indicates that the fraction of long-period binaries does not significantly evolve over the lifetime of galactic open clusters. We compare the distribution of cluster binaries to the binary populations of star forming regions, most notably Orion and Taurus, to critically review current ideas regarding the binary formation process. We conclude that it is still unclear whether the lower binary fraction observed in young clusters compared to T associations is purely the result of the early dynamical disruption of primordial binaries in dense clusters or whether it reflects intrinsically different modes of star formation in clusters and associations. We also note that if Taurus binaries result from the dynamical decay of small-N protostellar aggregates, one would predict the existence of a yet to be found dispersed population of mostly single substellar objects in the Taurus cloud.Comment: 10 pages, 3 figure

    CCAAT/enhancer binding protein β expression is increased in the brain during HIV-1-infection and contributes to regulation of astrocyte tissue inhibitor of metalloproteinase-1

    Get PDF
    Human immunodeficiency virus (HIV)-1-associated neurocognitive disorders (HAND) associated with infection and activation of mononuclear phagocytes (MP) in the brain, occur late in disease. Infected/activated MP initiate neuroinflammation activating glial cells and ultimately disrupting neuronal function. Astrocytes secrete tissue inhibitor of metalloproteinase (TIMP)-1 in response to neural injury. Altered TIMP-1 levels are implicated in several CNS diseases. CCAAT enhancer-binding protein ß (C/EBPß), a transcription factor, is expressed in rodent brains in response to neuroinflammation, implicating it in Alzheimer’s, Parkinson’s, and HAND. Here, we report that C/EBPß mRNA levels are elevated and its isoforms differentially expressed in total brain tissue lysates of HIV-1-infected and HIV-1 encephalitis patients. In vitro, HAND-relevant stimuli additively induce C/EBPß nuclear expression in human astrocytes through 7 days of treatment. Over-expression of C/EBPß increases TIMP-1 promoter activity, mRNA, and protein levels in human astrocytes activated with interleukin-1ß. Knockdown of C/EBPß with siRNA decreases TIMP-1 mRNA and protein levels. These data suggest that C/EBPß isoforms are involved in complex regulation of astrocyte TIMP-1 production during HIV-1 infection; however, further studies are required to completely understand their role during disease progression

    Toll-like receptor signaling adapter proteins govern spread of neuropathic pain and recovery following nerve injury in male mice.

    Get PDF
    BackgroundSpinal Toll-like receptors (TLRs) and signaling intermediaries have been implicated in persistent pain states. We examined the roles of two major TLR signaling pathways and selected TLRs in a mononeuropathic allodynia.MethodsL5 spinal nerve ligation (SNL) was performed in wild type (WT, C57BL/6) male and female mice and in male Tlr2-/-Tlr3-/-, Tlr4-/-, Tlr5-/-, Myd88-/-, Triflps2, Myd88/Triflps2, Tnf-/-, and Ifnar1-/- mice. We also examined L5 ligation in Tlr4-/- female mice. We examined tactile allodynia using von Frey hairs. Iba-1 (microglia) and GFAP (astrocytes) were assessed in spinal cords by immunostaining. Tactile thresholds were analyzed by 1- and 2-way ANOVA and the Bonferroni post hoc test was used.ResultsIn WT male and female mice, SNL lesions resulted in a persistent and robust ipsilateral, tactile allodynia. In males with TLR2, 3, 4, or 5 deficiencies, tactile allodynia was significantly, but incompletely, reversed (approximately 50%) as compared to WT. This effect was not seen in female Tlr4-/- mice. Increases in ipsilateral lumbar Iba-1 and GFAP were seen in mutant and WT mice. Mice deficient in MyD88, or MyD88 and TRIF, showed an approximately 50% reduction in withdrawal thresholds and reduced ipsilateral Iba-1. In contrast, TRIF and interferon receptor null mice developed a profound ipsilateral and contralateral tactile allodynia. In lumbar sections of the spinal cords, we observed a greater increase in Iba-1 immunoreactivity in the TRIF-signaling deficient mice as compared to WT, but no significant increase in GFAP. Removing MyD88 abrogated the contralateral allodynia in the TRIF signaling-deficient mice. Conversely, IFNβ, released downstream to TRIF signaling, administered intrathecally, temporarily reversed the tactile allodynia.ConclusionsThese observations suggest a critical role for the MyD88 pathway in initiating neuropathic pain, but a distinct role for the TRIF pathway and interferon in regulating neuropathic pain phenotypes in male mice

    In-situ characterization of the Hamamatsu R5912-HQE photomultiplier tubes used in the DEAP-3600 experiment

    Get PDF
    The Hamamatsu R5912-HQE photomultiplier-tube (PMT) is a novel high-quantum efficiency PMT. It is currently used in the DEAP-3600 dark matter detector and is of significant interest for future dark matter and neutrino experiments where high signal yields are needed. We report on the methods developed for in-situ characterization and monitoring of DEAP's 255 R5912-HQE PMTs. This includes a detailed discussion of typical measured single-photoelectron charge distributions, correlated noise (afterpulsing), dark noise, double, and late pulsing characteristics. The characterization is performed during the detector commissioning phase using laser light injected through a light diffusing sphere and during normal detector operation using LED light injected through optical fibres

    Microclimate buffering and thermal tolerance across elevations in a tropical butterfly

    Get PDF
    Microclimatic variability in tropical forests plays a key role in shaping species distributions and their ability to cope with environmental change, especially for ectotherms. Nonetheless, currently available climatic datasets lack data from the forest interior and, furthermore, our knowledge of thermal tolerance among tropical ectotherms is limited. We therefore studied natural variation in the microclimate experienced by tropical butterflies in the genus Heliconius across their Andean range in a single year. We found that the forest strongly buffers temperature and humidity in the understory, especially in the lowlands where temperatures are more extreme. There were systematic differences between our yearly records and macroclimate databases (WorldClim2), with lower interpolated minimum temperatures and maximum temperatures higher than expected. We then assessed thermal tolerance of ten Heliconius butterfly species in the wild and showed that populations at high elevations had significantly lower heat tolerance than those at lower elevations. However, when we reared populations of the widespread H. erato from high and low elevations in a common-garden environment, the difference in heat tolerance across elevations was reduced, indicating plasticity in this trait. Microclimate buffering is not currently captured in publicly available datasets but could be crucial for enabling upland shifting of species sensitive to heat such as highland Heliconius. Plasticity in thermal tolerance may alleviate the effects of global warming on some widespread ectotherm species, but more research is needed to understand the long-term consequences of plasticity on populations and species

    A Metasystem of Framework Model Organisms to Study Emergence of New Host-Microbe Adaptations

    Get PDF
    An unintended consequence of global industrialization and associated societal rearrangements is new interactions of microbes and potential hosts (especially mammals and plants), providing an opportunity for the rapid emergence of host-microbe adaptation and eventual establishment of new microbe-related diseases. We describe a new model system comprising the model plant Arabidopsis thaliana and several microbes, each representing different modes of interaction, to study such “maladaptations”. The model microbes include human and agricultural pathogens and microbes that are commonly considered innocuous. The system has a large knowledge base corresponding to each component organism and is amenable to high-throughput automation assisted perturbation screens for identifying components that modulate host-pathogen interactions. This would aid in the study of emergence and progression of host-microbe maladaptations in a controlled environment

    Pores for thought : can genetic manipulation of stomatal density protect future rice yields?

    Get PDF
    Rice (Oryza sativa L.) contributes to the diets of around 3.5 billion people every day and is consumed more than any other plant. Alarmingly, climate predictions suggest that the frequency of severe drought and high-temperature events will increase, and this is set to threaten the global rice supply. In this review, we consider whether water or heat stresses in crops — especially rice — could be mitigated through alterations to stomata; minute pores on the plant epidermis that permit carbon acquisition and regulate water loss. In the short-term, water loss is controlled via alterations to the degree of stomatal “openness”, or, in the longer-term, by altering the number (or density) of stomata that form. A range of molecular components contribute to the regulation of stomatal density, including transcription factors, plasma membrane-associated proteins and intercellular and extracellular signaling molecules. Much of our existing knowledge relating to stomatal development comes from research conducted on the model plant, Arabidopsis thaliana. However, due to the importance of cereal crops to global food supply, studies on grass stomata have expanded in recent years, with molecular-level discoveries underscoring several divergent developmental and morphological features. Cultivation of rice is particularly water-intensive, and there is interest in developing varieties that require less water yet still maintain grain yields. This could be achieved by manipulating stomatal development; a crop with fewer stomata might be more conservative in its water use and therefore more capable of surviving periods of water stress. However, decreasing stomatal density might restrict the rate of CO2 uptake and reduce the extent of evaporative cooling, potentially leading to detrimental effects on yields. Thus, the extent to which crop yields in the future climate will be affected by increasing or decreasing stomatal density should be determined. Here, our current understanding of the regulation of stomatal development is summarised, focusing particularly on the genetic mechanisms that have recently been described for rice and other grasses. Application of this knowledge toward the creation of “climate-ready” rice is discussed, with attention drawn to the lesser-studied molecular elements whose contributions to the complexity of grass stomatal development must be understood to advance efforts
    corecore