298 research outputs found

    Rapid whole genome optical mapping of Plasmodium falciparum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Immune evasion and drug resistance in malaria have been linked to chromosomal recombination and gene copy number variation (CNV). These events are ideally studied using comparative genomic analyses; however in malaria these analyses are not as common or thorough as in other infectious diseases, partly due to the difficulty in sequencing and assembling complete genome drafts. Recently, whole genome optical mapping has gained wide use in support of genomic sequence assembly and comparison. Here, a rapid technique for producing whole genome optical maps of <it>Plasmodium falciparum </it>is described and the results of mapping four genomes are presented.</p> <p>Methods</p> <p>Four laboratory strains of <it>P. falciparum </it>were analysed using the Argusℱ optical mapping system to produce ordered restriction fragment maps of all 14 chromosomes in each genome. <it>Plasmodium falciparum </it>DNA was isolated directly from blood culture, visualized using the Argusℱ system and assembled in a manner analogous to next generation sequence assembly into maps (AssemblyViewerℱ, OpGen Inc.<sup>¼</sup>). Full coverage maps were generated for <it>P. falciparum </it>strains 3D7, FVO, D6 and C235. A reference <it>P. falciparum in silico </it>map was created by the digestion of the genomic sequence of <it>P. falciparum </it>with the restriction enzyme AflII, for comparisons to genomic optical maps. Maps were then compared using the MapSolverℱ software.</p> <p>Results</p> <p>Genomic variation was observed among the mapped strains, as well as between the map of the reference strain and the map derived from the putative sequence of that same strain. Duplications, deletions, insertions, inversions and misassemblies of sizes ranging from 3,500 base pairs up to 78,000 base pairs were observed. Many genomic events occurred in areas of known repetitive sequence or high copy number genes, including <it>var </it>gene clusters and <it>rifin </it>complexes.</p> <p>Conclusions</p> <p>This technique for optical mapping of multiple malaria genomes allows for whole genome comparison of multiple strains and can assist in identifying genetic variation and sequence contig assembly. New protocols and technology allowed us to produce high quality contigs spanning four <it>P. falciparum </it>genomes in six weeks for less than $1,000.00 per genome. This relatively low cost and quick turnaround makes the technique valuable compared to other genomic sequencing technologies for studying genetic variation in malaria.</p

    Ammonium-Acetate Is Sensed by Gustatory and Olfactory Neurons in Caenorhabditis elegans

    Get PDF
    Background: Caenorhabditis elegans chemosensation has been successfully studied using behavioral assays that treat detection of volatile and water soluble chemicals as separate senses, analogous to smell and taste. However, considerable ambiguity has been associated with the attractive properties of the compound ammonium-acetate (NH 4Ac). NH 4Ac has been used in behavioral assays both as a chemosensory neutral compound and as an attractant. Methodology/Main Findings: Here we show that over a range of concentrations NH4Ac can be detected both as a water soluble attractant and as an odorant, and that ammonia and acetic acid individually act as olfactory attractants. We use genetic analysis to show that NaCl and NH4Ac sensation are mediated by separate pathways and that ammonium sensation depends on the cyclic nucleotide gated ion channel TAX-2/TAX-4, but acetate sensation does not. Furthermore we show that sodium-acetate (NaAc) and ammonium-chloride (NH4Cl) are not detected as Na + and Cl 2 specific stimuli, respectively. Conclusions/Significance: These findings clarify the behavioral response of C. elegans to NH4Ac. The results should have an impact on the design and interpretation of chemosensory experiments studying detection and adaptation to soluble compounds in the nematode Caenorhabditis elegans

    Uric Acid Is a Mediator of the Plasmodium falciparum-Induced Inflammatory Response

    Get PDF
    Malaria triggers a high inflammatory response in the host that mediates most of the associated pathologies and contributes to death. The identification of pro-inflammatory molecules derived from Plasmodium is essential to understand the mechanisms of pathogenesis and to develop targeted interventions. Uric acid derived from hypoxanthine accumulated in infected erythrocytes has been recently proposed as a mediator of inflammation in rodent malaria.We found that human erythrocytes infected with Plasmodium falciparum gradually accumulate hypoxanthine in their late stages of development. To analyze the role of hypoxanthine-derived uric acid induced by P. falciparum on the inflammatory cytokine response from human blood mononuclear cells, cultures were treated with allopurinol, to inhibit uric acid formation from hypoxanthine, or with uricase, to degrade uric acid. Both treatments significantly reduce the secretion of TNF, IL-6, IL-1beta and IL-10 from human cells.Uric acid is a major contributor of the inflammatory response triggered by P. falciparum in human peripheral blood mononuclear cells. Since the inflammatory reaction induced by P. falciparum is considered a major cause of malaria pathogenesis, identifying the mechanisms used by the parasite to induce the host inflammatory response is essential to develop urgently needed therapies against this disease

    Genetic diversity and transmissibility of imported Plasmodium vivax in Qatar and three countries of origin

    Get PDF
    Malaria control program in the Arabian Peninsula, backed by adequate logistical support, has interrupted transmission with exception of limited sites in Saudi Arabia and sporadic outbreaks in Oman. However, sustained influx of imported malaria represents a direct threat to the above success. Here we examined the extent of genetic diversity among imported P. vivax in Qatar, and its ability to produce gametocytes, compared to parasites in main sites of imported cases, the Indian subcontinent (india) and East Africa (Sudan and Ethiopia). High diversity was seen among imported P. vivax in Qatar, comparable to parasites in the Indian subcontinent and East Africa. Limited genetic differentiation was seen among imported P. vivax, which overlapped with parasites in India, but differentiated from that in Sudan and Ethiopia. Parasite density among imported cases, ranged widely between 26.25–7985934.1 Pv18S rRNA copies/”l blood, with a high prevalence of infections carried gametocytes detectable by qRT-PCR. Parasitaemia was a stronger predictor for P. vivax gametocytes density (r = 0.211, P = 0.04). The extensive diversity of imported P. vivax and its ability to produce gametocytes represent a major threat for re-introduction of malaria in Qatar. The genetic relatedness between P. vivax reported in Qatar and those in India suggest that elimination strategy should target flow and dispersal of imported malaria into the region

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Search for the neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    A search for neutral Higgs bosons of the Minimal Supersymmetric Standard Model (MSSM) is reported. The analysis is based on a sample of proton-proton collisions at a centre-of-mass energy of 7TeV recorded with the ATLAS detector at the Large Hadron Collider. The data were recorded in 2011 and correspond to an integrated luminosity of 4.7 fb-1 to 4.8 fb-1. Higgs boson decays into oppositely-charged muon or τ lepton pairs are considered for final states requiring either the presence or absence of b-jets. No statistically significant excess over the expected background is observed and exclusion limits at the 95% confidence level are derived. The exclusion limits are for the production cross-section of a generic neutral Higgs boson, φ, as a function of the Higgs boson mass and for h/A/H production in the MSSM as a function of the parameters mA and tan ÎČ in the mhmax scenario for mA in the range of 90GeV to 500 GeV. Copyright CERN

    Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of s=7  TeV \sqrt{s}=7\;\mathrm{TeV} proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan ÎČ < 40
    • 

    corecore