262 research outputs found

    Particle tracking for polydisperse sedimenting droplets in phase separation

    Get PDF
    When a binary fluid demixes under a slow temperature ramp, nucleation, coarsening and sedimentation of droplets lead to an oscillatory evolution of the phase separating system. The advection of the sedimenting droplets is found to be chaotic. The flow is driven by density differences between the two phases. Here, we show how image processing can be combined with particle tracking to resolve droplet size and velocity simultaneously. Droplets are used as tracer particles, and the sedimentation velocity is determined. Taking these effects into account, droplets with radii in the range of 4 -- 40 micrometers are detected and tracked. Based on this data we resolve the oscillations in the droplet size distribution which are coupled to the convective flow.Comment: 13 pages; 16 figures including 3 photographs and 3 false-color plot

    Comparison of a Flow Assay for Brucellosis Antibodies with the Reference cELISA Test in West African Bos indicus

    Get PDF
    Brucellosis is considered by the Food and Agricultural Organisation and the World Health Organisation as one of the most widespread zoonoses in the world. It is a major veterinary public health challenge as animals are almost exclusively the source of infection for people. It is often undiagnosed in both human patients and the animal sources and it is widely acknowledged that the epidemiology of brucellosis in humans and animals is poorly understood, particularly in sub-Saharan Africa. It is therefore important to develop better diagnostic tools in order to improve our understanding of the epidemiology and also for use in the field for disease control and eradication. As with any new diagnostic test, it is essential that it is validated in as many populations as possible in order to characterise its performance and improve the interpretation of its results. This paper describes a comparison between a new lateral flow assasy (LFA) for bovine brucellosis and the widely used cELISA in a no gold standard analysis to estimate test performance in this West African cattle population. A Bayesian formulation of the Hui-Walter latent class model incorporated previous studies' data on sensitivity and specificity of the cELISA. The results indicate that the new LFA is very sensitive (∼87%) and highly specific (∼97%). The analysis also suggests that the current cut-off of the cELSIA may not be optimal for this cattle population but alternative cut-offs did not significantly change the estimates of the LFA. This study demonstrates the potential usefulness of this simple to use test in field based surveillance and control which could be easily adopted for use in developing countries with only basic laboratory facilities

    Ocean community warming responses explained by thermal affinities and temperature gradients

    Get PDF
    As ocean temperatures rise, species distributions are tracking towards historically cooler regions in line with their thermal affinity. However, different responses of species to warming and changed species interactions make predicting biodiversity redistribution and relative abundance a challenge. Here, we use three decades of fish and plankton survey data to assess how warming changes the relative dominance of warm-affinity and cold-affinity species. Regions with stable temperatures (for example, the Northeast Pacific and Gulf of Mexico) show little change in dominance structure, while areas with warming (for example, the North Atlantic) see strong shifts towards warm-water species dominance. Importantly, communities whose species pools had diverse thermal affinities and a narrower range of thermal tolerance showed greater sensitivity, as anticipated from simulations. The composition of fish communities changed less than expected in regions with strong temperature depth gradients. There, species track temperatures by moving deeper, rather than horizontally, analogous to elevation shifts in land plants. Temperature thus emerges as a fundamental driver for change in marine systems, with predictable restructuring of communities in the most rapidly warming areas using metrics based on species thermal affinities. The ready and predictable dominance shifts suggest a strong prognosis of resilience to climate change for these communities

    Life and living in advanced age: a cohort study in New Zealand - Te Puāwaitanga o Nga Tapuwae Kia Ora Tonu, LiLACS NZ: Study protocol

    Get PDF
    The number of people of advanced age (85 years and older) is increasing and health systems may be challenged by increasing health-related needs. Recent overseas evidence suggests relatively high levels of wellbeing in this group, however little is known about people of advanced age, particularly the indigenous Māori, in Aotearoa, New Zealand. This paper outlines the methods of the study Life and Living in Advanced Age: A Cohort Study in New Zealand. The study aimed to establish predictors of successful advanced ageing and understand the relative importance of health, frailty, cultural, social & economic factors to successful ageing for Māori and non-Māori in New Zealand

    Polo kinase recruitment via the constitutive centromere-associated network at the kinetochore elevates centromeric RNA

    Get PDF
    The kinetochore, a multi-protein complex assembled on centromeres, is essential to segregate chromosomes during cell division. Deficiencies in kinetochore function can lead to chromosomal instability and aneuploidy-a hallmark of cancer cells. Kinetochore function is controlled by recruitment of regulatory proteins, many of which have been documented, however their function often remains uncharacterized and many are yet to be identified. To identify candidates of kinetochore regulation we used a proteome-wide protein association strategy in budding yeast and detected many proteins that are involved in post-translational modifications such as kinases, phosphatases and histone modifiers. We focused on the Polo-like kinase, Cdc5, and interrogated which cellular components were sensitive to constitutive Cdc5 localization. The kinetochore is particularly sensitive to constitutive Cdc5 kinase activity. Targeting Cdc5 to different kinetochore subcomplexes produced diverse phenotypes, consistent with multiple distinct functions at the kinetochore. We show that targeting Cdc5 to the inner kinetochore, the constitutive centromere-associated network (CCAN), increases the levels of centromeric RNA via an SPT4 dependent mechanism

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    First measurement of the |t|-dependence of coherent J/ψ photonuclear production

    Get PDF
    The first measurement of the cross section for coherent J/ψ photoproduction as a function of |t|, the square of the momentum transferred between the incoming and outgoing target nucleus, is presented. The data were measured with the ALICE detector in ultra-peripheral Pb–Pb collisions at a centre-of-mass energy per nucleon pair sNN=5.02TeV with the J/ψ produced in the central rapidity region |y|<0.8, which corresponds to the small Bjorken-x range (0.3−1.4)×10−3. The measured |t|-dependence is not described by computations based only on the Pb nuclear form factor, while the photonuclear cross section is better reproduced by models including shadowing according to the leading-twist approximation, or gluon-saturation effects from the impact-parameter dependent Balitsky–Kovchegov equation. These new results are therefore a valid tool to constrain the relevant model parameters and to investigate the transverse gluonic structure at very low Bjorken-x.publishedVersio

    First measurement of coherent ρ0 photoproduction in ultra-peripheral Xe–Xe collisions at √sNN = 5.44 TeV

    Get PDF
    The first measurement of the coherent photoproduction of ρ0 vector mesons in ultra-peripheral Xe–Xe collisions at sNN=5.44 TeV is presented. This result, together with previous HERA γp data and γ–Pb measurements from ALICE, describes the atomic number (A) dependence of this process, which is particularly sensitive to nuclear shadowing effects and to the approach to the black-disc limit of QCD at a semi-hard scale. The cross section of the Xe+Xe→ρ0+Xe+Xe process, measured at midrapidity through the decay channel ρ0→π+π−, is found to be dσ/dy=131.5±5.6(stat.)−16.9+17.5(syst.) mb. The ratio of the continuum to resonant contributions for the production of pion pairs is also measured. In addition, the fraction of events accompanied by electromagnetic dissociation of either one or both colliding nuclei is reported. The dependence on A of cross section for the coherent ρ0 photoproduction at a centre-of-mass energy per nucleon of the γA system of WγA,n=65 GeV is found to be consistent with a power-law behaviour σ(γA→ρ0A)∝Aα with a slope α=0.96±0.02(syst.). This slope signals important shadowing effects, but it is still far from the behaviour expected in the black-disc limit.publishedVersio

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    Resolving the strange behavior of extraterrestrial potassium in the upper atmosphere

    Get PDF
    It has been known since the 1960s that the layers of Na and K atoms, which occur between 80 and 105 km in the Earth's atmosphere as a result of meteoric ablation, exhibit completely different seasonal behavior. In the extratropics Na varies annually, with a pronounced wintertime maximum and summertime minimum. However, K varies semiannually with a small summertime maximum and minima at the equinoxes. This contrasting behavior has never been satisfactorily explained. Here we use a combination of electronic structure and chemical kinetic rate theory to determine two key differences in the chemistries of K and Na. First, the neutralization of K+ ions is only favored at low temperatures during summer. Second, cycling between K and its major neutral reservoir KHCO3 is essentially temperature independent. A whole atmosphere model incorporating this new chemistry, together with a meteor input function, now correctly predicts the seasonal behavior of the K layer
    corecore