82 research outputs found

    A Full-Potential-Linearized-Augmented-Plane-Wave Electronic Structure Study of delta-Plutonium and the (001) Surface

    Full text link
    The electronic and geometric properties of bulk fcc delta-plutonium and the quantum size effects in the surface energies and the work functions of the (001) ultra thin films (UTF) up to 7 layers have been investigated with periodic density functional theory calculations within the full-potential linearized augmented-plane wave (FP-LAPW) approach as implemented in the WIEN2k package. Our calculated equilibrium atomic volume of 178.3 a.u.^3 and bulk modulus of 24.9 GPa at the fully relativistic level of theory, i.e. spin-polarization and spin-orbit coupling included, are in good agreement with the experimental values of 168.2 a.u.^3 and 25 GPa (593 K), respectively. The calculated equilibrium lattice constants at different levels of approximation are used in the surface properties calculations for the thin films. The surface energy is found to be rapidly converged with the semi-infinite surface energy predicted to be 0.692eV at the fully-relativistic level.Comment: 27 pages,8 figure

    Nature of non-magnetic strongly-correlated state in delta-plutonium

    Get PDF
    Ab-initio relativistic dynamical mean-field theory is applied to resolve the long-standing controversy between theory and experiment in the "simple" face-centered cubic phase of plutonium called delta-Pu. In agreement with experiment, neither static nor dynamical magnetic moments are predicted. In addition, the quasiparticle density of states reproduces not only the peak close to the Fermi level, which explains the large coefficient of electronic specific heat, but also main 5f features observed in photoelectron spectroscopy.Comment: 9 pages, 3 figure

    An ab initio full potential fully relativistic study of atomic carbon, nitrogen, and oxygen chemisorption on the (111) surface of delta-plutonium

    Full text link
    Adsorption of carbon, nitrogen, and oxygen on the (111) surface of delta-Plutonium has been studied within the framework of density functional theory using the full-potential linear augmented plane wave plus local basis (FP-LAPW+lo) method. All adatoms prefer to bind at the higher coordinated hollow sites, with the chemisorption energies for C, N, and O being 6.539 eV, 6.714 eV, and 8.2 eV respectively. The work function and the surface Pu magnetic moments respectively increased and decreased in all cases upon chemisorption. The partial charges inside the muffin tins spheres, difference charge density distributions, and the local density of states have been used to analyze the Pu-adatom bond interactions.Comment: 40 double spaced pages, 6 tables, 6 figure

    A density functional study of molecular oxygen adsorption and reaction barrier on Pu (100) surface

    Full text link
    Oxygen molecule adsorptions on a Pu (100) surface have been studied in detail, using the generalized gradient approximation to density functional theory. Dissociative adsorption with a layer by layer alternate spin arrangement of the plutonium layer is found to be energetically more favorable compared to molecular adsorption. Hor2 approach on a bridge site without spin polarization was found to the highest chemisorbed site with energy of 8.787 eV among all the cases studied. The second highest chemisorption energy of 8.236 eV, is the spin-polarized Hor2 or Ver approach at center site. Inclusion of spin polarization affects the chemisorption processes significantly, non-spin-polarized chemisorption energies being typically higher than the spin-polarized energies. We also find that the 5f electrons to be more localized in spin-polarized cases compared to the non-spin-polarized counterparts. The ionic part of O-Pu bonding plays a significant role, while the Pu 5f-O 2p hybridization was found to be rather week. Also, adsorptions of oxygen push the top of 5f band deeper away from the Fermi level, indicating further bonding by the 5f orbitals might be less probable. Except for the interstitial sites, the work functions increase due to adsorptions of oxygen

    The importance of Real-Life research in Respiratory Medicine: Manifesto of the Respiratory Effectiveness Group:Endorsed by the International Primary Care Respiratory Group and the World Allergy Organization

    Get PDF
    status: publishe

    BUILDING BRIDGES FOR INNOVATION IN AGEING : SYNERGIES BETWEEN ACTION GROUPS OF THE EIP ON AHA

    Get PDF
    The Strategic Implementation Plan of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA) proposed six Action Groups. After almost three years of activity, many achievements have been obtained through commitments or collaborative work of the Action Groups. However, they have often worked in silos and, consequently, synergies between Action Groups have been proposed to strengthen the triple win of the EIP on AHA. The paper presents the methodology and current status of the Task Force on EIP on AHA synergies. Synergies are in line with the Action Groups' new Renovated Action Plan (2016-2018) to ensure that their future objectives are coherent and fully connected. The outcomes and impact of synergies are using the Monitoring and Assessment Framework for the EIP on AHA (MAFEIP). Eight proposals for synergies have been approved by the Task Force: Five cross-cutting synergies which can be used for all current and future synergies as they consider overarching domains (appropriate polypharmacy, citizen empowerment, teaching and coaching on AHA, deployment of synergies to EU regions, Responsible Research and Innovation), and three cross-cutting synergies focussing on current Action Group activities (falls, frailty, integrated care and chronic respiratory diseases).Peer reviewe

    Neuroprotection by adenosine in the brain: From A1 receptor activation to A2A receptor blockade

    Get PDF
    Adenosine is a neuromodulator that operates via the most abundant inhibitory adenosine A1 receptors (A1Rs) and the less abundant, but widespread, facilitatory A2ARs. It is commonly assumed that A1Rs play a key role in neuroprotection since they decrease glutamate release and hyperpolarize neurons. In fact, A1R activation at the onset of neuronal injury attenuates brain damage, whereas its blockade exacerbates damage in adult animals. However, there is a down-regulation of central A1Rs in chronic noxious situations. In contrast, A2ARs are up-regulated in noxious brain conditions and their blockade confers robust brain neuroprotection in adult animals. The brain neuroprotective effect of A2AR antagonists is maintained in chronic noxious brain conditions without observable peripheral effects, thus justifying the interest of A2AR antagonists as novel protective agents in neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease, ischemic brain damage and epilepsy. The greater interest of A2AR blockade compared to A1R activation does not mean that A1R activation is irrelevant for a neuroprotective strategy. In fact, it is proposed that coupling A2AR antagonists with strategies aimed at bursting the levels of extracellular adenosine (by inhibiting adenosine kinase) to activate A1Rs might constitute the more robust brain neuroprotective strategy based on the adenosine neuromodulatory system. This strategy should be useful in adult animals and especially in the elderly (where brain pathologies are prevalent) but is not valid for fetus or newborns where the impact of adenosine receptors on brain damage is different

    Inventory of current EU paediatric vision and hearing screening programmes

    Get PDF
    Background: We examined the diversity in paediatric vision and hearing screening programmes in Europe. Methods: Themes relevant for comparison of screening programmes were derived from literature and used to compile three questionnaires on vision, hearing and public-health screening. Tests used, professions involved, age and frequency of testing seem to influence sensitivity, specificity and costs most. Questionnaires were sent to ophthalmologists, orthoptists, otolaryngologists and audiologists involved in paediatric screening in all EU fullmember, candidate and associate states. Answers were cross-checked. Results: Thirty-nine countries participated; 35 have a vision screening programme, 33 a nation-wide neonatal hearing screening programme. Visual acuity (VA) is measured in 35 countries, in 71% more than once. First measurement of VA varies from three to seven years of age, but is usually before the age of five. At age three and four picture charts, including Lea Hyvarinen are used most, in children over four Tumbling-E and Snellen. As first hearing screening test otoacoustic emission (OAE) is used most in healthy neonates, and auditory brainstem response (ABR) in premature newborns. The majority of hearing testing programmes are staged; children are referred after one to four abnormal tests. Vision screening is performed mostly by paediatricians, ophthalmologists or nurses. Funding is mostly by health insurance or state. Coverage was reported as >95% in half of countries, but reporting was often not first-hand. Conclusion: Largest differences were found in VA charts used (12), professions involved in vision screening (10), number of hearing screening tests before referral (1-4) and funding sources (8)
    corecore