294 research outputs found

    Quantifying T2 relaxation time changes within lesions defined by apparent diffusion coefficient in grey and white matter in acute stroke patients

    Get PDF
    The apparent diffusion coefficient (ADC) of cerebral water, as measured by diffusion MRI, rapidly decreases in ischaemia, highlighting a lesion in acute stroke patients. The MRI T 2 relaxation time changes in ischaemic brain such that T 2 in ADC lesions may be informative of the extent of tissue damage, potentially aiding in stratification for treatment. We have developed a novel user-unbiased method of determining the changes in T 2 in ADC lesions as a function of clinical symptom duration based on voxel-wise referencing to a contralateral brain volume. The spherical reference method calculates the most probable pre-ischaemic T 2 on a voxel-wise basis, making use of features of the contralateral hemisphere presumed to be largely unaffected. We studied whether T 2 changes in the two main cerebral tissue types, i.e. in grey matter (GM) and white matter (WM), would differ in stroke. Thirty-eight acute stroke patients were accrued within 9 h of symptom onset and scanned at 3 T for 3D T 1-weighted, multi b-value diffusion and multi-echo spin echo MRI for tissue type segmentation, quantitative ADC and absolute T 2 images, respectively. T 2 changes measured by the spherical reference method were 1.94  ±  0.61, 1.50  ±  0.52 and 1.40  ±  0.54 ms h−1 in the whole, GM, and WM lesions, respectively. Thus, T 2 time courses were comparable between GM and WM independent of brain tissue type involved. We demonstrate that T 2 changes in ADC-delineated lesions can be quantified in the clinical setting in a user unbiased manner and that T 2 change correlated with symptom onset time, opening the possibility of using the approach as a tool to assess severity of tissue damage in the clinical setting

    Efficacy of endovascular thrombectomy in patients with M2 segment middle cerebral artery occlusions: meta-analysis of data from the HERMES Collaboration

    Get PDF
    Background: The Society of Neurointerventional Surgery revised its operational definition of emergent large vessel occlusion (ELVO) recently to include proximal M2 segment middle cerebral artery (MCA) occlusions. We sought to assess the benefit of endovascular thrombectomy (EVT) over best medical care for M2 segment MCA occlusion. Methods: Patient level data from trials in the HERMES Collaboration were included. The HERMES core laboratory identified patients with M2 segment MCA occlusions and further classified them as proximal versus distal, anterior versus posterior division, and dominant versus co-dominant versus non-dominant. Primary outcome was modified Rankin Scale (mRS) score 0–2 at 90 days. Secondary outcomes were modified Thrombolysis in Cerebral Infarction (mTICI) rates at end of procedure, 90-day mRS shift, 90-day mRS 0–1, 24 hours National Institute of Health Stroke Scale (NIHSS) score 0–2, symptomatic intracerebral hemorrhage (ICH), and death. Results: 130 patients with M2 MCA (proximal location n=116 vs distal n=14, anterior division n=72 vs posterior n=58, dominant n=73 vs co-dominant n=50 vs non-dominant n=7) were included. Successful reperfusion (mTICI 2b or 3) among those undergoing EVT was seen in 59.2% of patients. Treatment effect favored EVT (adjusted OR 2.39, 95% CI 1.08 to 5.28, p=0.03) for 90-day mRS 0–2 (58.2% EVT vs 39.7% control). Direction of benefit favored EVT for other outcomes. Treatment effect favoring EVT was maximal in patients with proximal M2 segment MCA occlusions (n=116, adjusted OR 2.68, 95% CI 1.13 to 6.37) and in dominant M2 segment MCA occlusions (n=73, adjusted OR 4.08, 95% CI 1.08 to 15.48). No sICH (0%) was observed in patients treated with EVT compared with five (7.9%) in the control arm. Conclusion: Patients with proximal M2 segment MCA occlusions eligible for EVT trial protocols benefited from EVT

    Automated final lesion segmentation in posterior circulation acute ischemic stroke using deep learning

    Get PDF
    Final lesion volume (FLV) is a surrogate outcome measure in anterior circulation stroke (ACS). In posterior circulation stroke (PCS), this relation is plausibly understudied due to a lack of methods that automatically quantify FLV. The applicability of deep learning approaches to PCS is limited due to its lower incidence compared to ACS. We evaluated strategies to develop a convolutional neural network (CNN) for PCS lesion segmentation by using image data from both ACS and PCS patients. We included follow-up non-contrast computed tomography scans of 1018 patients with ACS and 107 patients with PCS. To assess whether an ACS lesion segmentation generalizes to PCS, a CNN was trained on ACS data (ACS-CNN). Second, to evaluate the performance of only including PCS patients, a CNN was trained on PCS data. Third, to evaluate the performance when combining the datasets, a CNN was trained on both datasets. Finally, to evaluate the performance of transfer learning, the ACS-CNN was fine-tuned using PCS patients. The transfer learning strategy outperformed the other strategies in volume agreement with an intra-class correlation of 0.88 (95% CI: 0.83–0.92) vs. 0.55 to 0.83 and a lesion detection rate of 87% vs. 41–77 for the other strategies. Hence, transfer learning improved the FLV quantification and detection rate of PCS lesions compared to the other strategies

    Confirmatory study of time-dependent computed tomographic perfusion thresholds for use in acute ischemic stroke

    Get PDF
    Background and Purpose: Computed tomographic perfusion (CTP) thresholds associated with follow-up brain infarction may differ by time from symptom onset to imaging and reperfusion. We confirm CTP thresholds over time to imaging and reperfusion in patients with acute ischemic stroke from the HERMES collaboration (Highly Effective Reperfusion Evaluated in Multiple Endovascular Stroke Trials) data. Methods: Patients with occlusion on CT angiography were acutely imaged with CTP. Noncontrast CT and magnetic resonance-diffusion weighted imaging at 24 to 48 hours defined follow-up infarction. Reperfusion was assessed on conventional angiogram. Tmax, cerebral blood flow (CBF), and cerebral blood volume maps were derived from delay-insensitive CTP postprocessing. These parameters were analyzed using receiver operator characteristics to derive optimal thresholds based on time from stroke onset-to-CTP or to reperfusion. ANOVA and linear regression were used to test whether the derived CTP thresholds were different by time. Results: One hundred thirty-seven patients were included. Tmax thresholds of >15.7 s and >15.8 s and absolute CBF thresholds of <8.9 and <7.5 mL·min−1·100 g−1 for gray matter and white matter respectively were associated with infarct if reperfusion was achieved <90 minutes from CTP with stroke onset-to-CTP <180 minutes. The discriminative ability of cerebral blood volume was modest. There were no statistically significant relationships between stroke onset-to-CTP time and Tmax, CBF, and cerebral blood volume thresholds (all P>0.05). A statistically significant relationship was observed between CTP-to-reperfusion time and the optimal thresholds for Tmax (P<0.001) and CBF (P<0.001). Similar but more modest relationship was noted for onset-to-reperfusion time and optimal thresholds for CBF (P≀0.01). Conclusions: CTP thresholds based on stroke onset and imaging time and taking into account time needed for reperfusion may improve infarct prediction in patients with acute ischemic stroke

    Does sex modify the effect of endovascular treatment for ischemic stroke? A subgroup analysis of seven randomized trials

    Get PDF
    Background and Purpose: Previous studies have reported less favorable outcome and less effect of endovascular treatment (EVT) after ischemic stroke in women than in men. Our aim was to study the influence of sex on outcome and on the effect of EVT for ischemic stroke in recent randomized trials on EVT. Methods: We used data from 7 randomized controlled trials on EVT within the HERMES collaboration. The primary outcome was 90-day functional outcome (modified Rankin Scale). We compared baseline characteristics and outcomes between men and women. With ordinal logistic regression, we evaluated the association between EVT and 90-day functional outcome for men and women separately, adjusted for potential confounders. We tested for interaction between sex and EVT. Results: We included 1762 patients in the analyses, of whom 833 (47%) were women. Women were older (median, 70 versus 66 years; P<0.001), were smoking less often (30% versus 44%; P<0.001), and had higher collateral grades (grade 3: 46% versus 35%; P<0.001) than men. Functional independence (modified Rankin Scale score, 0–2) at 90 days was reached by 318 women (39%) and 364 men (39%). The effect of EVT on the ordinal modified Rankin Scale was similar in women (adjusted common odds ratio [acOR], 2.13; 95% CI, 1.47–3.07) and men (acOR, 2.16; 95% CI, 1.59–2.96), with a P for interaction of 0.926. Conclusions: Sex does not influence clinical outcome after EVT and does not modify treatment effect of EVT. Therefore, sex should not be a consideration in the selection of patients for EVT

    Automatic segmentation of cerebral infarcts in follow-up computed tomography images with convolutional neural networks

    Get PDF
    Background and purpose: Infarct volume is a valuable outcome measure in treatment trials of acute ischemic stroke and is strongly associated with functional outcome. Its manual volumetric assessment is, however, too demanding to be implemented in clinical practice. Objective: To assess the value of convolutional neural networks (CNNs) in the automatic segmentation of infarct volume in follow-up CT images in a large population of patients with acute ischemic stroke. Materials and methods: We included CT images of 1026 patients from a large pooling of patients with acute ischemic stroke. A reference standard for the infarct segmentation was generated by manual delineation. We introduce three CNN models for the segmentation of subtle, intermediate, and severe hypodense lesions. The fully automated infarct segmentation was defined as the combination of the results of these three CNNs. The results of the three-CNNs approach were compared with the results from a single CNN approach and with the reference standard segmentations. Results: The median infarct volume was 48 mL (IQR 15–125 mL). Comparison between the volumes of the three-CNNs approach and manually delineated infarct volumes showed excellent agreement, with an intraclass correlation coefficient (ICC) of 0.88. Even better agreement was found for severe and intermediate hypodense infarcts, with ICCs of 0.98 and 0.93, respectively. Although the number of patients used for training in the single CNN approach was much larger, the accuracy of the three-CNNs approach strongly outperformed the single CNN approach, which had an ICC of 0.34. Conclusion: Convolutional neural networks are valuable and accurate in the quantitative assessment of infarct volumes, for both subtle and severe hypodense infarcts in follow-up CT images. Our proposed three-CNNs approach strongly outperforms a more straightforward single CNN approach

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter
    • 

    corecore