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ABSTRACT
Background and purpose infarct volume is a 
valuable outcome measure in treatment trials of 
acute ischemic stroke and is strongly associated with 
functional outcome. its manual volumetric assessment is, 
however, too demanding to be implemented in clinical 
practice.
Objective To assess the value of convolutional neural 
networks (cnns) in the automatic segmentation 
of infarct volume in follow- up cT images in a large 
population of patients with acute ischemic stroke.
Materials and methods We included cT images 
of 1026 patients from a large pooling of patients with 
acute ischemic stroke. a reference standard for the infarct 
segmentation was generated by manual delineation. 
We introduce three cnn models for the segmentation 
of subtle, intermediate, and severe hypodense lesions. 
The fully automated infarct segmentation was defined as 
the combination of the results of these three cnns. The 
results of the three- cnns approach were compared with 
the results from a single cnn approach and with the 
reference standard segmentations.
Results The median infarct volume was 48 ml (iQr 
15–125 ml). comparison between the volumes of 
the three- cnns approach and manually delineated 
infarct volumes showed excellent agreement, with an 
intraclass correlation coefficient (icc) of 0.88. even 
better agreement was found for severe and intermediate 
hypodense infarcts, with iccs of 0.98 and 0.93, 
respectively. although the number of patients used for 
training in the single cnn approach was much larger, 
the accuracy of the three- cnns approach strongly 
outperformed the single cnn approach, which had an 
icc of 0.34.
Conclusion convolutional neural networks are valuable 
and accurate in the quantitative assessment of infarct 
volumes, for both subtle and severe hypodense infarcts 
in follow- up cT images. Our proposed three- cnns 
approach strongly outperforms a more straightforward 
single cnn approach.

InTROduCTIOn
Measuring the volume of infarcts on non- contrast 
computed tomography (NCCT) scans provides a 
quantitative assessment of infarcted brain tissue 
resulting from ischemic stroke. Follow- up infarct 
volume measured after 24 hours from onset1 is a 
valuable predictor of functional outcome. Infarct 
volume has been suggested as a surrogate endpoint 
for classic patient outcome scales in multiple 
randomized controlled trials.2 By combining infarct 
volume with infarct location, a more precise predic-
tion of patient outcome can be achieved.3

The reference standard for infarct segmentation 
is manual delineation by medical experts. However, 
manual delineation has several disadvantages as it 
is time- demanding, subjective, prone to errors, and 
costly.4 Accordingly, manual delineation does not 
work well in large cohort studies.

Convolutional neural networks (CNNs) have 
outperformed many existing image analysis 
methods for image classification and image segmen-
tation. CNNs have produced good segmenta-
tion results in multiple medical imaging domains, 
including segmentation of ischemic stroke lesions 
in magnetic resonance images of the brain.5–7 In 
this study, we evaluated the usefulness of CNNs for 
automatic segmentation of infarcted brain tissue in 
follow- up NCCT scans from patients with an acute 
ischemic stroke.

MATeRIAlS And MeThOdS
Image data
We used anonymized image data from the HERMES 
collaboration.8 This collaboration combined clin-
ical and image data from seven clinical trials that 
investigated the efficacy of endovascular therapy in 
patients with acute ischemic stroke. Central medical 
ethics committees and research boards of each 
participating hospital approved each trial and the 
use of anonymized image data in this retrospective 
study. All patients, or their legal representatives, 
provided written informed consent.
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Figure 1 Histogram of average infarct intensities of the manually 
delineated infarcts. The left CT image at the top displays a relatively old 
infarct with a severe hypodensity; in the middle, an intermediate old 
infarct is shown; and the image on the right shows a relatively young 
infarct with a subtle hypodensity.

We used image data only from patients with follow- up NCCT 
acquired between 12 hours and 2 weeks after stroke onset and 
for whom a reference infarct segmentation was available. A 
total of 1026 patients had follow- up NCCT imaging acquired 
within the selected time window and with an available reference 
segmentation. Thin- slice image data were reconstructed into 
scans with 5 mm slice thickness.

Reference segmentations
The reference infarct segmentation on the follow- up NCCT 
scans was manually delineated by one of two experienced 
observers, as described by Boers et al.9 In short, infarcts were 
identified as hypodense areas. Infarcted tissue in the ipsilateral 
hemisphere with characteristics of an old infarct were excluded 
from the reference segmentation. NCCT scans of patients who 
underwent decompressive hemicraniectomy were excluded. 
Parenchymal hemorrhages within or adjacent to the infarcted 
area were included in the reference segmentation. A standard 
window width of 30 Hounsfield units (HU) and center level 
of 35 HU were used to limit variation between observers. If 
multiple follow- up images were available, reference segmen-
tation was performed in the latest acquired scan. The manual 
segmentations were checked by one of three expert radiologists 
and, when necessary, corrections were made.

Preprocessing
To exclude trivial voxels that were of no interest, such as air 
or skull, we used automatic methods for intracranial region and 
cerebrospinal fluid (CSF) segmentation. First, we excluded all 
voxels outside the brain using an intracranial region segmenta-
tion. Subsequently, we also discarded all voxels selected by the 
CSF segmentation. All discarded voxels were neither used to 
train the CNN nor used for accuracy testing of the CNN.

The intracranial region segmentation uses the size range 
of the foramina of the skull, as reported by Berge et al,10 and 
typical HU values of the skull. This segmentation was performed 
according to the following steps:

 ► A threshold- based segmentation was performed to segment 
bones. We considered everything with intensity >160 HU 
as bone.

 ► A morphological dilatation with a 7 mm radius was used to 
close all foramina of the skull except the foramen magnum.

 ► The center of gravity of the segmented bone was used as a 
seed for a region growing inside the skull.

 ► A morphological dilatation with a 7 mm radius was applied 
to the region growing result to bring the segmented intracra-
nial region close to the skull border.

 ► The foramen magnum was detected by evaluation of the 
segmented area in each individual slice from top to bottom. 
The foramen magnum slice was determined as the first slice 
with a segmented area <900 mm² after the slice with the 
maximum segmented area. All voxels below the foramen 
magnum slice were excluded from the segmentation.

The CSF segmentation was performed by selecting the voxels 
around the centroid of the segmented intracranial region as 
seeds for region growing. All voxels within a maximum distance 
of 15 mm from this centroid and with density values between −5 
and 13 HU were used as seeds. The lower and upper thresholds 
of this region growing were also −5 and 13 HU.

We used a previously presented method for automated intra-
cranial hemorrhage segmentation11 to exclude the parenchymal 
hemorrhages of the CNN- based infarct segmentation. These 
hemorrhage voxels were not used to train the CNN. However, 

for infarct volume accuracy testing, any area that was classified 
as hemorrhage was added to the infarct segmentation.

Cnn-based infarct segmentation
The CNN architecture used in this study was developed 
in- house. Its hyperparameters were optimized for segmentation 
of a single foreground structure in head NCCT scans, which 
in this case was the infarcted brain tissue. Previously, the same 
CNN architecture was successfully used for intracranial hemor-
rhage segmentation.11 This CNN architecture determines the 
probability of the voxel at the center of an image patch being 
foreground (infarcted tissue) or background (any other tissue). 
This probability was subsequently dichotomized using a cut- off 
value, which was optimized with the data in the validation set.

The CNN architecture has two convolutional layers followed 
by two fully connected dense layers. Each dense layer has 256 
nodes. The size of the input patch was 19×19×3 voxels; 19×19 
voxels in the axial plane and three slices high. Each slice of the 
input patch was processed as a different image channel. After 
each convolutional layer, there is a max- polling layer with a 2×2 
kernel and a 2×2 stride. The first convolutional layer has 64 
feature maps and the second has 128 feature maps. Both convo-
lutional layers have kernels with size 5×5.

The hypodensity of the infarcted tissue in NCCT scans is 
related to breakdown of cells and its fluid content. As shown 
in figure 1, the infarcted areas in the three NCCT scans have 
different HU values. In figure 1, we also show the distribution 
of the average HU values of the infarct reference segmenta-
tions. In our population, the HU value distribution depicted 
three peaks, which we named subtle, intermediate, and severe 
hypodense infarcts. Because of this observation, we trained three 
CNNs. Each of these CNNs was trained to classify a different 
hypodensity distribution of infarcted brain tissue. We grouped 
all patients according to the hypodensity of the delineated 
infarct. We used the average HU value of the infarction for this 
grouping. The average infarct intensity was computed after 
excluding the hemorrhage voxels of the reference segmentation. 
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Figure 2 Top: Comparison of the infarct volume of the results from the three- CNNs approach (y axis) with the reference to infarct volume (x 
axis). Bottom: Bland- Altman plots of the infarct volumes. The difference in the volume determination is given along the y axis, and the average 
of the automated and reference infarct volume is depicted along the x axis. The different columns show separate severe, intermediate, and subtle 
hypodensity infarcts.

Table 1 Results of automated infarct segmentation for severe, 
intermediate, and subtle hypodense infarcts and the average over the 
whole test dataset for the three- CNNs approach. for comparison with 
the accuracy of the single CNN approach

ICC dice Test set size

Three- CNNs approach Severe 0.98 0.78±0.09 67

Intermediate 0.93 0.61±0.21 204

Subtle 0.66 0.37±0.26 125

All infarctions 0.88 0.57±0.26 396

Single CNN approach All infarctions 0.34 0.18±0.23 396

CNN, convolutional neural network; ICC, intraclass correlation coefficient.

The thresholds that define each infarction class were (14, 22) 
HU for severe, (22, 32) HU for intermediate, and (32, 44) HU 
for subtle.

We used 570 randomly selected scans to train the three CNNs. 
We augmented the number of training infarct patches by flipping 
along the sagittal plane and by rotation. No data augmentation 
was applied to the non- infarct patches. We used an additional 60 
scans to optimize the cut- off value for generating binary segmen-
tations, 20 scans for each CNN. The union of the results of 
these three CNNs and the result of the intracranial hemorrhage 
segmentation was considered to be the automated generated 
infarct segmentation. The remaining 396 scans were used to test 
segmentation performance.

For comparison, we also trained a single CNN architecture for 
the segmentation of all types of infarction. The same method-
ology and data were used for this single CNN approach and the 
three- CNNs approach.

We used the Dice coefficient as an accuracy measure of the 
infarct segmentation performance in the test set. We calculated 
the intraclass correlation coefficients (ICCs) to compare the 
reference and the automatically generated infarct volumes. ICCs 
were interpreted according to the American Psychological Asso-
ciation al12 : <0.4 is poor; ≥0.4 to <0.6 is fair, ≥0.6 to <0.75 
is good, and ≥0.75 is excellent. We opted not to compare our 
approach with U- Net or Mask R- CNN architectures. Both these 
architectures are more extensive than the proposed architecture 
and, in a straightforward approach, their input would be an 
entire NCCT slice. Since we used 5 mm reconstructions, and not 
all slices from a NCCT scan have infarction, we did not expect 
a satisfactory segmentation given the limited number of NCCT 

slices with infarcted brain tissue that would be used as training 
samples.

ReSulTS
The median infarct volume was 48 (IQR 15–125) mL overall, 
with 29 (IQR 11–86), 46 (IQR 18–101), and 89 (IQR 
35–210) mL for patients with a subtle, intermediate, and severe 
hypodense infarct, respectively.

The comparison between manually delineated infarct volumes 
and the volumes from the three- CNNs approach showed an 
excellent agreement with an ICC of 0.88. Even better agreement 
was observed for severe and intermediate hypodense infarcts 
with ICCs of 0.98 and 0.93, respectively. Agreement was good 
for subtle hypodense infarcts, with an ICC of 0.66. In figure 2, copyright.
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Figure 3 Sample results. from left to right we have input image, union 
of the segmentation results, and reference segmentation. For simplicity, 
in the center column we rendered the hemorrhages (blue) over the 
subtle infarcts (yellow), subtle infarcts over standard infarcts (orange), 
and standard infarcts over severe infarcts (red). The Dice coefficients 
from top to bottom were 0.10, 0.26, 0.40, 0.55, and 0.70. In the left 
colum the original images are shown. The right shows the merged 
segmentations.

the agreement between the infarct volumes is shown. Agreement 
of the single CNN approach was poor, with an ICC of 0.34.

The average Dice coefficient achieved by the three- CNNs 
approach was 0.57±0.26. The average Dice coefficients for 
each category were 0.78±0.09, 0.61±0.21, and 0.37±0.26, for 
the severe, intermediate, and subtle hypodense infarcts, respec-
tively. The method based on a single CNN achieved an average 
Dice coefficient of 0.18±0.23. Table 1 shows a summary of the 
segmentation performance measures. In figure 3, we show some 
sample results from the three- CNNs approach.

dISCuSSIOn
We have shown that CNNs are valuable in the automated cere-
bral infarct segmentation in follow- up CT images of patients 
with acute ischemic stroke, with excellent agreement with 
volumetric assessments of expert observers. Owing to the wide 
variety of the severity of hypodensities, we proposed using the 
combination of three CNNs, which strongly outperformed a 
single CNN approach.

Infarct location and infarct volume have been strongly asso-
ciated with outcome of patients with ischemic stroke in several 
studies.3 13 Reliably segmenting cerebral infarcts is challenging 
because of pathophysiological heterogeneity, presence of pre- 
existing pathologies such as old infarcts, leukoaraiosis, atrophy, 
intrinsic differences in attenuation of grey and white matter, 
and hemorrhagic transformation. Thus, to be able to develop 
robust automated methods for cerebral infarct segmentation, 
heterogeneous image data are required. The proposed method 
was evaluated in a large cohort of patients from seven multi-
center randomized trials enrolling in multiple countries. The 
follow- up NCCT scans used in our study also had a (pragmati-
cally) wide range of follow- up time after stroke onset, ranging 
from 12 hours to 2 weeks. Despite these variations, the proposed 
approach based on three different CNNs produced accurate 
cerebral infarct segmentations. The volume of these segmenta-
tions had good or excellent correlation with the reference infarct 
volume. We have shown that accuracy for old, severe hypodense 
infarcts was higher than for subtle hypodense infarcts. Note that, 
although we presented the results in a selective manner, exactly 
the same procedure was applied for the infarct segmentations in 
all the three different infarct categories.

A number of previous studies on automatic infarct core 
segmentation in various image modalities have been presented. 
Multiple CNN- based techniques have been introduced recently. 
On baseline CT perfusion, state- of- the- art infarct segmentation 
was obtained by a CNN architecture proposed by Liu et al,14 
achieving an average Dice coefficient of 0.51±0.31. On MRI 
the CNN architecture proposed by Kamnitsas et al6 reported 
an average Dice coefficient of 0.66±0.24. Maier et al7 tested 
several methods with different types of MR images. Their best 
reported result was achieved by a CNN with an average Dice 
coefficient of 0.73±0.18. The current state- of- the- art method 
for infarct segmentation on MR images is the CNN proposed by 
Zhang et al,5 which achieved an average Dice coefficient of 0.79 
in a test set with 90 images. Although good segmentation results 
were achieved in CT perfusion and MR images, NCCT scans are 
still the predominant method for assessment of follow- up infarct 
in patients with ischemic stroke. Therefore, we focused on using 
NCCT as input for the proposed cerebral infarct segmentation 
method.

On NCCT scans, two semiautomated methods are available 
for infarct segmentation. The semiautomated method by Bardera 
et al15 was evaluated with 18 patients and reported a Pearson’s 
correlation coefficient of 0.98 and 0.97 compared with the 
manual segmentations from two different observers. The semi-
automated method by Kuang et al16 was evaluated with 16 
patients and reported an average Dice coefficient of 0.76±0.10. 
By contrast, our method is both fully automated, which avoids 
the variability introduced by the user inputs, and has been tested 
on a far larger number of patients.

Other fully automated methods for infarct segmentation on 
NCCT are available. The method by Boers et al17 reported 
an average Dice coefficient of 0.74±0.13 in a test set with 
34 images. The average onset to follow- up scanning time in 
the study by Boers et al was 4.1±2.3 days. The average Dice 
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coefficient between human observers in the study by Boers et 
al was 0.84 ranging from 0.63 to 0.94, which was somewhat 
higher than the agreement we achieved. However, it should 
be noted that the manual delineation was performed for old, 
hypodense infarcts only. The method by Vos et al18 reported 
an average Dice coefficient of 0.74±0.09 in a test set with 30 
images. In the study by Vos et al, the average time between onset 
and scan acquisition was 3 days ranging between 2 and 5 days. 
More recently, the method by Gillebert et al19 was evaluated 
with 12 patients with ischemic stroke and reported Dice coeffi-
cients ranging from 0.27 to 0.71. The scans used to evaluate the 
method by Gillebert et al had an average acquisition time after 
onset of 40 hours. Their method was evaluated in a limited set 
of selected images to illustrate different types of ischemic stroke 
lesions. In contrast with the methods of Boers et al, Vos et al, and 
Gillebert et al, our method has been thoroughly evaluated with 
a large and diverse test set.

The data used in our study included follow- up scans as early 
as 12 hours after stroke onset. Infarcts in these early follow- up 
scans might be subtle and harder to segment. Thus, it was 
expected that our method would achieve a lower accuracy in 
such scans. Moreover, the manual delineation in these scans is 
more difficult, resulting in more variation among experts. This 
may also strongly contribute to the lower agreement of the auto-
mated method with the reference standard. It some cases (also 
in figure 3), the network in charge of segmenting subtle infarcts 
overestimates the infarct region by including subtle hypodense 
areas which are not part of the infarction. Another common 
source of misclassifications by our proposed method is the inclu-
sion of cerebral sulci in the results of the network trained to 
segment severe infarctions (figure 3).

A major limitation is the highly selective nature of the 
HERMES population. All patients had anterior circulation 
stroke confirmed by CT angiography, mostly within 6 hours 
of onset. Patients were excluded from most studies if they had 
prior disability or low Alberta Stroke Program Early CT scores. 
As a result, many of the background abnormalities typical in 
populations with acute stroke were less prevalent in our popu-
lation. Moreover, average age was around 69, and very elderly 
patients were under- represented. Despite variation among 
study populations, these still represent a much more homoge-
neous group than patients with stroke as a whole.

Overall, the proposed method achieved an excellent correla-
tion with the reference infarct volume. This suggests that our 
method can be used in clinical trials, replacing tedious manual 
delineations. Its value in functional outcome prediction for 
patients with ischemic stroke and its value as a secondary 
outcome measure in treatment trials still has to be established.
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