408 research outputs found

    Survival probability in diffractive Higgs production in high density QCD

    Full text link
    In this paper, the contribution of hard processes described by the BFKL pomeron exchange, is taken into account by calculating the first enhanced diagram. The survival probability is estimated, using the ratio of the first enhanced diagram and the single pomeron amplitude, taking into account all essential pomeron loop diagrams in the toy model of Mueller. The triple pomeron vertex is calculated explicitly in the momentum representation. This calculation is used for estimating the survival probability, It turns out that the survival probability is small, at 0.40.4%{}. Hard pomeron re-scattering processes contribute substantially to the survival probability.Comment: 28 pages, 7 figure

    A-dependence of nuclear transparency in quasielastic A(e,e'p) at high Q^2

    Get PDF
    The A-dependence of the quasielastic A(e,e'p) reaction has been studied at SLAC with H-2, C, Fe, and Au nuclei at momentum transfers Q^2 = 1, 3, 5, and 6.8 (GeV/c)^2. We extract the nuclear transparency T(A,Q^2), a measure of the average probability that the struck proton escapes from the nucleus A without interaction. Several calculations predict a significant increase in T with momentum transfer, a phenomenon known as Color Transparency. No significant rise within errors is seen for any of the nuclei studied.Comment: 5 pages incl. 2 figures, Caltech preprint OAP-73

    Determination of the neutron electric form factor in quasielastic scattering of polarized electrons from polarized 3He

    Get PDF
    We report a measurement of the asymmetry in spin-dependent quasielastic scattering of longitudinally polarized electrons from a polarized 3He gas target. The asymmetry is measured at kinematics sensitive to the transverse-longitudinal response function RTL(Q2,ω). The value of the neutron electric form factor GEn(Q2=0.16 (GeV/c2))=+0.070±0.100±0.035 is extracted from the asymmetry using a Faddeev calculation of the 3He wave function

    Resummation of the hadronic tau decay width with the modified Borel transform method

    Get PDF
    A modified Borel transform of the Adler function is used to resum the hadronic tau decay width ratio. In contrast to the ordinary Borel transform, the integrand of the Borel integral is renormalization--scale invariant. We use an ansatz which explicitly accounts for the structure of the leading infrared renormalon. Further, we use judiciously chosen conformal transformations for the Borel variable, in order to map sufficiently away from the origin the other ultraviolet and infrared renormalon singularities. In addition, we apply Pade approximants for the corresponding truncated perturbation series of the modified Borel transform, in order to further accelerate the convergence. Comparing the results with the presently available experimental data on the tau hadronic decay width ratio, we obtain αs(Mz)=0.1192+0.0007exp.+0.0010EW+CKM+0.0009th.+0.0003evol.\alpha_s(M^z) = 0.1192 +- 0.0007_{exp.} +- 0.0010_{EW+CKM} +- 0.0009_{th.} +- 0.0003_{evol.}. These predictions virtually agree with those of our previous resummations where we used ordinary Borel transforms instead.Comment: 32 pages, 2 eps-figures, revtex; minor changes in the formulations; a typo in Eq.(47) corrected; version as appearing in Phys. Rev.

    Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia

    Get PDF
    Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4minutes in length), and a dynamic sense, computed using sliding windows (44s in length) and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual), as well as reduced connectivity (hypoconnectivity) between sensory networks from all modalities. Dynamic analysis suggests that (1), on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2), that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical–subcortical antagonism (anti-correlations) and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity. Group differences are weak or absent during other connectivity states. Dynamic analysis also revealed hypoconnectivity between the putamen and sensory networks during the same states of thalamic hyperconnectivity; notably, this finding cannot be observed in the static connectivity analysis. Finally, in post-hoc analyses we observed that the relationships between sub-cortical low frequency power and connectivity with sensory networks is altered in patients, suggesting different functional interactions between sub-cortical nuclei and sensorimotor cortex during specific connectivity states. While important differences between patients with schizophrenia and healthy controls have been identified, one should interpret the results with caution given the history of medication in patients. Taken together, our results support and expand current knowledge regarding dysconnectivity in schizophrenia, and strongly advocate the use of dynamic analyses to better account for and understand functional connectivity differences.Highlights•Studied both static and dynamic connectivity changes in schizophrenia during rest•Small but significant connectivity differences might be obscured in static analysis.•Patients show significant differences in dwell times in multiple states.•Disrupted thalamo-cortical connectivity in schizophrenia in a state-specific manne

    Nuclear transparency from quasielastic A(e,e'p) reactions uo to Q^2=8.1 (GeV/c)^2

    Get PDF
    The quasielastic (e,e^\primep) reaction was studied on targets of deuterium, carbon, and iron up to a value of momentum transfer Q2Q^2 of 8.1 (GeV/c)2^2. A nuclear transparency was determined by comparing the data to calculations in the Plane-Wave Impulse Approximation. The dependence of the nuclear transparency on Q2Q^2 and the mass number AA was investigated in a search for the onset of the Color Transparency phenomenon. We find no evidence for the onset of Color Transparency within our range of Q2Q^2. A fit to the world's nuclear transparency data reflects the energy dependence of the free proton-nucleon cross section.Comment: 11 pages, 6 figure

    Momentum transfer dependence of nuclear transparency from the quasielastic 12C(e,e’p) reaction

    Get PDF
    The cross section for quasielastic 12C(e,e’p) scattering has been measured at momentum transfer Q2=1, 3, 5, and 6.8 (GeV/c)2. The results are consistent with scattering from a single nucleon as the dominant process. The nuclear transparency is obtained and compared with theoretical calculations that incorporate color transparency effects. No significant rise of the transparency with Q2 is observed

    Genuine Correlations of Like-Sign Particles in Hadronic Z0 Decays

    Get PDF
    Correlations among hadrons with the same electric charge produced in Z0 decays are studied using the high statistics data collected from 1991 through 1995 with the OPAL detector at LEP. Normalized factorial cumulants up to fourth order are used to measure genuine particle correlations as a function of the size of phase space domains in rapidity, azimuthal angle and transverse momentum. Both all-charge and like-sign particle combinations show strong positive genuine correlations. One-dimensional cumulants initially increase rapidly with decreasing size of the phase space cells but saturate quickly. In contrast, cumulants in two- and three-dimensional domains continue to increase. The strong rise of the cumulants for all-charge multiplets is increasingly driven by that of like-sign multiplets. This points to the likely influence of Bose-Einstein correlations. Some of the recently proposed algorithms to simulate Bose-Einstein effects, implemented in the Monte Carlo model PYTHIA, are found to reproduce reasonably well the measured second- and higher-order correlations between particles with the same charge as well as those in all-charge particle multiplets.Comment: 26 pages, 6 figures, Submitted to Phys. Lett.

    Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma: The STAR Collaboration's Critical Assessment of the Evidence from RHIC Collisions

    Get PDF
    We review the most important experimental results from the first three years of nucleus-nucleus collision studies at RHIC, with emphasis on results from the STAR experiment, and we assess their interpretation and comparison to theory. The theory-experiment comparison suggests that central Au+Au collisions at RHIC produce dense, rapidly thermalizing matter characterized by: (1) initial energy densities above the critical values predicted by lattice QCD for establishment of a Quark-Gluon Plasma (QGP); (2) nearly ideal fluid flow, marked by constituent interactions of very short mean free path, established most probably at a stage preceding hadron formation; and (3) opacity to jets. Many of the observations are consistent with models incorporating QGP formation in the early collision stages, and have not found ready explanation in a hadronic framework. However, the measurements themselves do not yet establish unequivocal evidence for a transition to this new form of matter. The theoretical treatment of the collision evolution, despite impressive successes, invokes a suite of distinct models, degrees of freedom and assumptions of as yet unknown quantitative consequence. We pose a set of important open questions, and suggest additional measurements, at least some of which should be addressed in order to establish a compelling basis to conclude definitively that thermalized, deconfined quark-gluon matter has been produced at RHIC.Comment: 101 pages, 37 figures; revised version to Nucl. Phys.
    corecore