120 research outputs found

    A high-yield vacuum-evaporation-based R2R-compatible fabrication route for organic electronic circuits

    Get PDF
    Advances are described in a vacuum-evaporation-based approach for the roll-to-roll (R2R) production of organic thin film transistors (TFTs) and circuits. Results from 90-transistor arrays formed directly onto a plasma-polymerised diacrylate gate dielectric are compared with those formed on polystyrene-buffered diacrylate. The latter approach resulted in stable, reproducible transistors with yields in excess of 90%. The resulting TFTs had low turn-on voltage, on-off ratios ∼106 and mobility ∼1 cm2/V s in the linear regime, as expected for dinaphtho[2,3-b: 2′,3′-f] thieno[3,2-b]thiophene the air stable small molecule used as the active semiconductor. We show that when device design is constrained by the generally poor registration ability of R2R processes, parasitic source-drain currents can lead to a >50% increase in the mobility extracted from the resulting TFTs, the increases being especially marked in low channel width devices. Batches of 27 saturated-load inverters were fabricated with 100% yield and their behaviour successfully reproduced using TFT parameters extracted with Silvaco's UOTFT Model. 5- and 7-stage ring oscillator (RO) outputs ranged from ∼120 Hz to >2 kHz with rail voltages, VDD, increasing from -15 V to -90 V. From simulations an order of magnitude increase in frequency could be expected by reducing parasitic gate capacitances. During 8 h of continuous operation at VDD = -60 V, the frequency of a 7-stage RO remained almost constant at ∼1.4 kHz albeit that the output signal amplitude decreased from ∼22 V to ∼10 V. Over the next 30 days of intermittent operation further degradation in performance occurred although an unused RO showed no deterioration over the same period. © 2014 The Authors. Published by Elsevier B.V

    Large-scale pathways-based association study in amyotrophic lateral sclerosis

    No full text
    Sporadic amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease, most likely results from complex genetic and environmental interactions. Although a number of association studies have been performed in an effort to find genetic components of sporadic ALS, most of them resulted in inconsistent findings due to a small number of genes investigated in relatively small sample sizes, while the replication of results was rarely attempted. Defects in retrograde axonal transport, vesicle trafficking and xenobiotic metabolism have been implicated in neurodegeneration and motor neuron death both in human disease and animal models. To assess the role of common genetic variation in these pathways in susceptibility to sporadic ALS, we performed a pathway-based candidate gene case-control association study with replication. Furthermore, we determined reliability of whole genome amplified DNA in a large-scale association study. In the first stage of the study, 1277 putative functional and tagging SNPs in 134 genes spanning 8.7 Mb were genotyped in 822 British sporadic ALS patients and 872 controls using whole genome amplified DNA. To detect variants with modest effect size and discriminate among false positive findings 19 SNPs showing a trend of association in the initial screen were genotyped in a replication sample of 580 German sporadic ALS patients and 361 controls. We did not detect strong evidence of association with any of the genes investigated in the discovery sample (lowest uncorrected P-value 0.00037, lowest permutation corrected P-value 0.353). None of the suggestive associations was replicated in a second sample, further excluding variants with moderate effect size. We conclude that common variation in the investigated pathways is unlikely to have a major effect on susceptibility to sporadic ALS. The genotyping efficiency was only slightly decreased (∼1%) and genotyping quality was not affected using whole genome amplified DNA. It is reliable for large scale genotyping studies of diseases such as ALS, where DNA sample collections are limited because of low disease prevalence and short survival time. © 2007 The Author(s)

    Prognostic indicators and outcomes of hospitalised COVID-19 patients with neurological disease: An individual patient data meta-analysis

    Get PDF
    Background Neurological COVID-19 disease has been reported widely, but published studies often lack information on neurological outcomes and prognostic risk factors. We aimed to describe the spectrum of neurological disease in hospitalised COVID-19 patients; characterise clinical outcomes; and investigate factors associated with a poor outcome. Methods We conducted an individual patient data (IPD) meta-analysis of hospitalised patients with neurological COVID-19 disease, using standard case definitions. We invited authors of studies from the first pandemic wave, plus clinicians in the Global COVID-Neuro Network with unpublished data, to contribute. We analysed features associated with poor outcome (moderate to severe disability or death, 3 to 6 on the modified Rankin Scale) using multivariable models. Results We included 83 studies (31 unpublished) providing IPD for 1979 patients with COVID-19 and acute new-onset neurological disease. Encephalopathy (978 [49%] patients) and cerebrovascular events (506 [26%]) were the most common diagnoses. Respiratory and systemic symptoms preceded neurological features in 93% of patients; one third developed neurological disease after hospital admission. A poor outcome was more common in patients with cerebrovascular events (76% [95% CI 67–82]), than encephalopathy (54% [42–65]). Intensive care use was high (38% [35–41]) overall, and also greater in the cerebrovascular patients. In the cerebrovascular, but not encephalopathic patients, risk factors for poor outcome included breathlessness on admission and elevated D-dimer. Overall, 30-day mortality was 30% [27–32]. The hazard of death was comparatively lower for patients in the WHO European region. Interpretation Neurological COVID-19 disease poses a considerable burden in terms of disease outcomes and use of hospital resources from prolonged intensive care and inpatient admission; preliminary data suggest these may differ according to WHO regions and country income levels. The different risk factors for encephalopathy and stroke suggest different disease mechanisms which may be amenable to intervention, especially in those who develop neurological symptoms after hospital admission

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    BACKGROUND: Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. METHODS: The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950. FINDINGS: Globally, 18·7% (95% uncertainty interval 18·4–19·0) of deaths were registered in 1950 and that proportion has been steadily increasing since, with 58·8% (58·2–59·3) of all deaths being registered in 2015. At the global level, between 1950 and 2017, life expectancy increased from 48·1 years (46·5–49·6) to 70·5 years (70·1–70·8) for men and from 52·9 years (51·7–54·0) to 75·6 years (75·3–75·9) for women. Despite this overall progress, there remains substantial variation in life expectancy at birth in 2017, which ranges from 49·1 years (46·5–51·7) for men in the Central African Republic to 87·6 years (86·9–88·1) among women in Singapore. The greatest progress across age groups was for children younger than 5 years; under-5 mortality dropped from 216·0 deaths (196·3–238·1) per 1000 livebirths in 1950 to 38·9 deaths (35·6–42·83) per 1000 livebirths in 2017, with huge reductions across countries. Nevertheless, there were still 5·4 million (5·2–5·6) deaths among children younger than 5 years in the world in 2017. Progress has been less pronounced and more variable for adults, especially for adult males, who had stagnant or increasing mortality rates in several countries. The gap between male and female life expectancy between 1950 and 2017, while relatively stable at the global level, shows distinctive patterns across super-regions and has consistently been the largest in central Europe, eastern Europe, and central Asia, and smallest in south Asia. Performance was also variable across countries and time in observed mortality rates compared with those expected on the basis of development. INTERPRETATION: This analysis of age-sex-specific mortality shows that there are remarkably complex patterns in population mortality across countries. The findings of this study highlight global successes, such as the large decline in under-5 mortality, which reflects significant local, national, and global commitment and investment over several decades. However, they also bring attention to mortality patterns that are a cause for concern, particularly among adult men and, to a lesser extent, women, whose mortality rates have stagnated in many countries over the time period of this study, and in some cases are increasing

    Increased serum ferritin levels in amyotrophic lateral sclerosis (ALS) patients

    No full text
    Iron misregulation promotes oxidative stress, a proposed pathological mechanism in neurodegenerative disease. The aim of this study was to evaluate serum iron metabolism indicators in 60 amyotrophic lateral sclerosis (ALS) patients and 44 age matched controls. Serum ferritin levels were significantly increased in ALS patients compared to controls (p < 0.001), while no differences in the levels of serum iron, transferrin, iron saturation or total iron binding capacity were found. Likewise no differences in C reactive protein (CRP) or caeruloplasmin were detected, suggesting that the elevated ferritin levels in ALS did not merely indicate an acute phase response. The increased ferritin level may reflect a general increase in stored iron or be a consequence of ongoing muscle degeneration

    Association of the H63D polymorphism in the hemochromatosis gene with sporadic ALS

    No full text
    Iron misregulation promotes oxidative stress and abnormally high iron levels have been found in the spinal cords of patients with ALS. The authors investigated whether HFE gene polymorphisms, linked to hemochromatosis, are associated with ALS using two independent populations of patients with sporadic ALS and controls (totaling 379 patients and 400 controls). They found that the H63D polymorphism is overrepresented in individuals with sporadic ALS (odds ratio 1.85, CI: 1.35 to 2.54)
    corecore