760 research outputs found
A momentum-dependent perspective on quasiparticle interference in Bi_{2}Sr_{2}CaCu_{2}O_{8+\delta}
Angle Resolved Photoemission Spectroscopy (ARPES) probes the momentum-space
electronic structure of materials, and provides invaluable information about
the high-temperature superconducting cuprates. Likewise, the cuprate
real-space, inhomogeneous electronic structure is elucidated by Scanning
Tunneling Spectroscopy (STS). Recently, STS has exploited quasiparticle
interference (QPI) - wave-like electrons scattering off impurities to produce
periodic interference patterns - to infer properties of the QP in
momentum-space. Surprisingly, some interference peaks in
Bi_{2}Sr_{2}CaCu_{2}O_{8+\delta} (Bi-2212) are absent beyond the
antiferromagnetic (AF) zone boundary, implying the dominance of particular
scattering process. Here, we show that ARPES sees no evidence of quasiparticle
(QP) extinction: QP-like peaks are measured everywhere on the Fermi surface,
evolving smoothly across the AF zone boundary. This apparent contradiction
stems from different natures of single-particle (ARPES) and two-particle (STS)
processes underlying these probes. Using a simple model, we demonstrate
extinction of QPI without implying the loss of QP beyond the AF zone boundary
Exploring local knowledge and perceptions on zoonoses among pastoralists in northern and eastern Tanzania
Background: Zoonoses account for the most commonly reported emerging and re-emerging infectious diseases in Sub-Saharan Africa. However, there is limited knowledge on how pastoral communities perceive zoonoses in relation to their livelihoods, culture and their wider ecology. This study was carried out to explore local knowledge and perceptions on zoonoses among pastoralists in Tanzania. Methodology and principal findings: This study involved pastoralists in Ngorongoro district in northern Tanzania and Kibaha and Bagamoyo districts in eastern Tanzania. Qualitative methods of focus group discussions, participatory epidemiology and interviews were used. A total of 223 people were involved in the study. Among the pastoralists, there was no specific term in their local language that describes zoonosis. Pastoralists from northern Tanzania possessed a higher understanding on the existence of a number of zoonoses than their eastern districts' counterparts. Understanding of zoonoses could be categorized into two broad groups: a local syndromic framework, whereby specific symptoms of a particular illness in humans concurred with symptoms in animals, and the biomedical framework, where a case definition is supported by diagnostic tests. Some pastoralists understand the possibility of some infections that could cross over to humans from animals but harm from these are generally tolerated and are not considered as threats. A number of social and cultural practices aimed at maintaining specific cultural functions including social cohesion and rites of passage involve animal products, which present zoonotic risk. Conclusions: These findings show how zoonoses are locally understood, and how epidemiology and biomedicine are shaping pastoralists perceptions to zoonoses. Evidence is needed to understand better the true burden and impact of zoonoses in these communities. More studies are needed that seek to clarify the common understanding of zoonoses that could be used to guide effective and locally relevant interventions. Such studies should consider in their approaches the pastoralists' wider social, cultural and economic set up
Recommended from our members
Mycolactone-dependent depletion of endothelial cell thrombomodulin is strongly associated with fibrin deposition in Buruli ulcer lesions
A well-known histopathological feature of diseased skin in Buruli ulcer (BU) is coagulative necrosis caused by the Mycobacterium ulcerans macrolide exotoxin mycolactone. Since the underlying mechanism is not known, we have investigated the effect of mycolactone on endothelial cells, focussing on the expression of surface anticoagulant molecules involved in the protein C anticoagulant pathway. Congenital deficiencies in this natural anticoagulant pathway are known to induce thrombotic complications such as purpura fulimans and spontaneous necrosis. Mycolactone profoundly decreased thrombomodulin (TM) expression on the surface of human dermal microvascular endothelial cells (HDMVEC) at doses as low as 2ng/ml and as early as 8hrs after exposure. TM activates protein C by altering thrombin's substrate specificity, and exposure of HDMVEC to mycolactone for 24 hours resulted in an almost complete loss of the cells' ability to produce activated protein C. Loss of TM was shown to be due to a previously described mechanism involving mycolactone-dependent blockade of Sec61 translocation that results in proteasome-dependent degradation of newly synthesised ER-transiting proteins. Indeed, depletion from cells determined by live-cell imaging of cells stably expressing a recombinant TM-GFP fusion protein occurred at the known turnover rate. In order to determine the relevance of these findings to BU disease, immunohistochemistry of punch biopsies from 40 BU lesions (31 ulcers, nine plaques) was performed. TM abundance was profoundly reduced in the subcutis of 78% of biopsies. Furthermore, it was confirmed that fibrin deposition is a common feature of BU lesions, particularly in the necrotic areas. These findings indicate that there is decreased ability to control thrombin generation in BU skin. Mycolactone's effects on normal endothelial cell function, including its ability to activate the protein C anticoagulant pathway are strongly associated with this. Fibrin-driven tisischemia could contribute to the development of the tissue necrosis seen in BU lesions
Effects of intrauterine food restriction and long-term dietary supplementation with L-arginine on age-related changes in renal function and structure of rats
We have previously demonstrated that restricting intrauterine food by 50% in 3-mo-old rats produced lower nephron numbers and early-onset hypertension, the latter being normalized by L-arginine administration. in 18-mo-old rats, such restriction increased glomerulosclerosis. in this study, we expanded our investigation, evaluating functional, morphologic, and immunohistochemical parameters in intrauterine-food-restricted 18-mo-old rats, either receiving L-arginine (RA18) or not (R18). Age-matched, non-food-restricted controls were assigned to similar groups with L-arginine (CA18) and without (C18). After weaning, L-arginine was given daily for 17 mo. No functional or morphologic changes were observed in C IS rats. the R18 rats developed early-onset hypertension, which persisted throughout the observation period, as well its significant proteinuria from 12 mo on. in RA18 rats, L-arginine decreased both blood pressure levels and proteinuria, and glomerular diameter was si,significantly smaller than in R18 rats (115.63 +/- 2.2 versus 134.8 +/- 1.0 mu m, p < 0.05). However, in RA18 rats, glomerular filtration rate remained depressed. Although L-arginine prevented glomerulosclerosis (R18 = 14%, RA18 = 4%; p < 0.05), glomerular expression of fibronectin and desmin was still greater in RA18 rats than in controls. Our data show that, although L-arginine prevented hypertension and proteinuria, glomerular injury still occurred, suggesting that intrauterine food restriction may be one of the leading causes of impaired renal function in adult life.Universidade Federal de São Paulo, Dept Physiol, EPM, Dept Physiol, BR-04023900 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Physiol, EPM, Dept Morphol,Embrol Div, BR-04023900 São Paulo, BrazilUniv São Paulo, Ribeirao Preto Sch Med, Dept Physiol & Biophys, Brookline, MA 02146 USAUniversidade Federal de São Paulo, Dept Physiol, EPM, Dept Physiol, BR-04023900 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Physiol, EPM, Dept Morphol,Embrol Div, BR-04023900 São Paulo, BrazilWeb of Scienc
Sex differences in rat placental development: from pre-implantation to late gestation
Background A male fetus is suggested to be more susceptible to in utero and birth complications. This may be due in part to altered morphology or function of the XY placenta. We hypothesised that sexual dimorphism begins at the blastocyst stage with sex differences in the progenitor trophectoderm (TE) and its derived trophoblast lineages, as these cells populate the majority of cell types within the placenta. We investigated sex-specific differences in cell allocation in the pre-implantation embryo and further characterised growth and gene expression of the placental compartments from the early stages of the definitive placenta through to late gestation. Methods Naturally mated Sprague Dawley dams were used to collect blastocysts at embryonic day (E) 5 to characterise cell allocation; total, TE, and inner cell mass (ICM), and differentiation to downstream trophoblast cell types. Placental tissues were collected at E13, E15, and E20 to characterise volumes of placental compartments, and sex-specific gene expression profiles. Results Pre-implantation embryos showed no sex differences in cell allocation (total, TE and ICM) or early trophoblast differentiation, assessed by outgrowth area, number and ploidy of trophoblasts and P-TGCs, and expression of markers of trophoblast stem cell state or differentiation. Whilst no changes in placental structures were found in the immature E13 placenta, the definitive E15 placenta from female fetuses had reduced labyrinthine volume, fetal and maternal blood space volume, as well as fetal blood space surface area, when compared to placentas from males. No differences between the sexes in labyrinth trophoblast volume or interhaemal membrane thickness were found. By E20 these sex-specific placental differences were no longer present, but female fetuses weighed less than their male counterparts. Coupled with expression profiles from E13 and E15 placental samples may suggest a developmental delay in placental differentiation. Conclusions Although there were no overt differences in blastocyst cell number or early placental development, reduced growth of the female labyrinth in mid gestation is likely to contribute to lower fetal weight in females at E20. These data suggest sex differences in fetal growth trajectories are due at least in part, to differences in placenta growth
Can hibernators sense and evade fires? Olfactory acuity and locomotor performance during deep torpor.
Increased habitat fragmentation, global warming and other human activities have caused a rise in the frequency of wildfires worldwide. To reduce the risks of uncontrollable fires, prescribed burns are generally conducted during the colder months of the year, a time when in many mammals torpor is expressed regularly. Torpor is crucial for energy conservation, but the low body temperatures (T b) are associated with a decreased responsiveness and torpid animals might therefore face an increased mortality risk during fires. We tested whether hibernators in deep torpor (a) can respond to the smell of smoke and (b) can climb to avoid fires at T bs below normothermic levels. Our data show that torpid eastern pygmy-possums (Cercartetus nanus) are able to detect smoke and also can climb. All males aroused from torpor when the smoke stimulus was presented at an ambient temperature (T a) of 15 °C (T b ∼18 °C), whereas females only raised their heads. The responses were less pronounced at T a 10 °C. The first coordinated movement of possums along a branch was observed at a mean T b of 15.6 °C, and animals were even able to climb their prehensile tail when they reached a mean T b of 24.4 °C. Our study shows that hibernators can sense smoke and move at low T b. However, our data also illustrate that at T b ≤13 °C, C. nanus show decreased responsiveness and locomotor performance and highlight that prescribed burns during winter should be avoided on very cold days to allow torpid animals enough time to respond
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
Parental Reports of Infant and Child Eating Behaviors are not Affected by Their Beliefs About Their Twins’ Zygosity
Parental perception of zygosity might bias heritability estimates derived from parent rated twin data. This is the first study to examine if similarities in parental reports of their young twins’ behavior were biased by beliefs about their zygosity. Data were from Gemini, a British birth cohort of 2402 twins born in 2007. Zygosity was assessed twice, using both DNA and a validated parent report questionnaire at 8 (SD = 2.1) and 29 months (SD = 3.3). 220/731 (8 months) and 119/453 (29 months) monozygotic (MZ) pairs were misclassified as dizygotic (DZ) by parents; whereas only 6/797 (8 months) and 2/445 (29 months) DZ pairs were misclassified as MZ. Intraclass correlations for parent reported eating behaviors (four measured at 8 months; five at 16 months) were of the same magnitude for correctly classified and misclassified MZ pairs, suggesting that parental zygosity perception does not influence reporting on eating behaviors of their young twins
Altered ureteric branching morphogenesis and nephron endowment in offspring of diabetic and insulin-treated pregnancy
<div><p>There is strong evidence from human and animal models that exposure to maternal hyperglycemia during <i>in utero</i> development can detrimentally affect fetal kidney development. Notwithstanding this knowledge, the precise effects of diabetic pregnancy on the key processes of kidney development are unclear due to a paucity of studies and limitations in previously used methodologies. The purpose of the present study was to elucidate the effects of hyperglycemia on ureteric branching morphogenesis and nephrogenesis using unbiased techniques. Diabetes was induced in pregnant C57Bl/6J mice using multiple doses of streptozotocin (STZ) on embryonic days (E) 6.5-8.5. Branching morphogenesis was quantified <i>ex vivo</i> using Optical Projection Tomography, and nephrons were counted using unbiased stereology. Maternal hyperglycemia was recognised from E12.5. At E14.5, offspring of diabetic mice demonstrated fetal growth restriction and a marked deficit in ureteric tip number (control 283.7±23.3 vs. STZ 153.2±24.6, mean±SEM, <i>p</i><0.01) and ureteric tree length (control 33.1±2.6 mm vs. STZ 17.6±2.7 mm, <i>p</i> = 0.001) vs. controls. At E18.5, fetal growth restriction was still present in offspring of STZ dams and a deficit in nephron endowment was observed (control 1246.2±64.9 vs. STZ 822.4±74.0, <i>p<</i>0.001). Kidney malformations in the form of duplex ureter and hydroureter were a common observation (26%) in embryos of diabetic pregnancy compared with controls (0%). Maternal insulin treatment from E13.5 normalised maternal glycaemia but did not normalise fetal weight nor prevent the nephron deficit. The detrimental effect of hyperglycemia on ureteric branching morphogenesis and, in turn, nephron endowment in the growth-restricted fetus highlights the importance of glycemic control in early gestation and during the initial stages of renal development.</p> </div
Hyponatremia revisited: Translating physiology to practice
The complexity of hyponatremia as a clinical problem is likely caused by the opposite scenarios that accompany this electrolyte disorder regarding pathophysiology (depletional versus dilutional hyponatremia, high versus low vasopressin levels) and therapy (rapid correction to treat cerebral edema versus slow correction to prevent osmotic demyelination, fluid restriction versus fluid resuscitation). For a balanced differentiation between these opposites, an understanding of the pathophysiology of hyponatremia is required. Therefore, in this review an attempt is made to translate the physiology of water balance regulation to strategies that improve the clinical management of hyponatremia. A physiology-based approach to the patient with hyponatremia is presented, first addressing the possibility of acute hyponatremia, and then asking if and if so why vasopressin is secreted non-osmotically. Additional diagnostic recommendations are not to rely too heavily of the assessment of the extracellular fluid volume, to regard the syndrome of inappropriate antidiuresis as a diagnosis of exclusion, and to rationally investigate the pathophysiology of hyponatremia rather than to rely on isolated laboratory values with arbitrary cutoff values. The features of the major hyponatremic disorders are discussed, including diuretic-induced hyponatremia, adrenal and pituitary insufficiency, the syndrome of inappropriate antidiuresis, cerebral salt wasting, and exercise-associated hyponatremia. The treatment of hyponatremia is reviewed from simple saline solutions to the recently introduced vasopressin receptor antagonists, including their promises and limitations. Given the persistently high rates of hospital-acquired hyponatremia, the importance of improving the management of hyponatremia seems both necessary and achievable. Copyrigh
- …
