120 research outputs found

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Commitment versus persuasion in the three-party constrained voter model

    Get PDF
    In the framework of the three-party constrained voter model, where voters of two radical parties (A and B) interact with "centrists" (C and Cz), we study the competition between a persuasive majority and a committed minority. In this model, A's and B's are incompatible voters that can convince centrists or be swayed by them. Here, radical voters are more persuasive than centrists, whose sub-population consists of susceptible agents C and a fraction zeta of centrist zealots Cz. Whereas C's may adopt the opinions A and B with respective rates 1+delta_A and 1+delta_B (with delta_A>=delta_B>0), Cz's are committed individuals that always remain centrists. Furthermore, A and B voters can become (susceptible) centrists C with a rate 1. The resulting competition between commitment and persuasion is studied in the mean field limit and for a finite population on a complete graph. At mean field level, there is a continuous transition from a coexistence phase when zeta= Delta_c. In a finite population of size N, demographic fluctuations lead to centrism consensus and the dynamics is characterized by the mean consensus time tau. Because of the competition between commitment and persuasion, here consensus is reached much slower (zeta=Delta_c) than in the absence of zealots (when tau\simN). In fact, when zeta<Delta_c and there is an initial minority of centrists, the mean consensus time asymptotically grows as tau\simN^{-1/2} e^{N gamma}, where gamma is determined. The dynamics is thus characterized by a metastable state where the most persuasive voters and centrists coexist when delta_A>delta_B, whereas all species coexist when delta_A=delta_B. When zeta>=Delta_c and the initial density of centrists is low, one finds tau\simln N (when N>>1). Our analytical findings are corroborated by stochastic simulations.Comment: 25 pages, 6 figures. Final version for the Journal of Statistical Physics (special issue on the "applications of statistical mechanics to social phenomena"

    Effects of rapid antigen degradation and VEE glycoprotein specificity on immune responses induced by a VEE replicon vaccine

    Get PDF
    Genetic vaccines are engineered to produce immunogens de novo in the cells of the host for stimulation of a protective immune response. In some of these systems, antigens engineered for rapid degradation have produced an enhanced cellular immune response by more efficient entry into pathways for processing and presentation of MHC class I peptides. VEE replicon particles (VRP), single cycle vaccine vectors derived from Venezuelan equine encephalitis virus (VEE), are examined here for the effect of an increased rate of immunogen degradation on VRP vaccine efficacy. VRP expressing the matrix capsid (MA/CA) portion of SIV Gag were altered to promote rapid degradation of MA/CA by various linkages to co-translated ubiquitin or by destabilizing mutations and were used to immunize BALB/c mice for quantitation of the anti-MA/CA cellular and humoral immune responses. Rapid degradation by the N-end rule correlated with a dampened immune response relative to unmodified MA/CA when the VRP carried a glycoprotein spike from an attenuated strain of VEE. In contrast, statistically equivalent numbers of IFNγ+ T-cells resulted when VRP expressing unstable MA/CA were packaged with the wild-type VEE glycoproteins. These results suggest that the cell types targeted in vivo by VRP carrying mutant or wild type glycoprotein spikes are functionally different, and are consistent with previous findings suggesting that wild-type VEE glycoproteins preferentially target professional antigen presenting cells that use peptides generated from the degraded antigen for direct presentation on MHC

    Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.

    Get PDF
    Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy

    Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8 TeV

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7  fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale

    Large-scale sequencing identifies multiple genes and rare variants associated with Crohn's disease susceptibility

    Get PDF
    Genome-wide association studies (GWASs) have identified hundreds of loci associated with Crohn's disease (CD). However, as with all complex diseases, robust identification of the genes dysregulated by noncoding variants typically driving GWAS discoveries has been challenging. Here, to complement GWASs and better define actionable biological targets, we analyzed sequence data from more than 30,000 patients with CD and 80,000 population controls. We directly implicate ten genes in general onset CD for the first time to our knowledge via association to coding variation, four of which lie within established CD GWAS loci. In nine instances, a single coding variant is significantly associated, and in the tenth, ATG4C, we see additionally a significantly increased burden of very rare coding variants in CD cases. In addition to reiterating the central role of innate and adaptive immune cells as well as autophagy in CD pathogenesis, these newly associated genes highlight the emerging role of mesenchymal cells in the development and maintenance of intestinal inflammation.Large-scale sequence-based analyses identify novel risk variants and susceptibility genes for Crohn's disease, and implicate mesenchymal cell-mediated intestinal homeostasis in disease etiology.Cellular mechanisms in basic and clinical gastroenterology and hepatolog

    Research priorities in prehabilitation for patients undergoing cancer surgery: an international Delphi study

    Get PDF
    Background Recently, the number of prehabilitation trials has increased significantly. The identification of key research priorities is vital in guiding future research directions. Thus, the aim of this collaborative study was to define key research priorities in prehabilitation for patients undergoing cancer surgery. Methods The Delphi methodology was implemented over three rounds of surveys distributed to prehabilitation experts from across multiple specialties, tumour streams and countries via a secure online platform. In the first round, participants were asked to provide baseline demographics and to identify five top prehabilitation research priorities. In successive rounds, participants were asked to rank research priorities on a 5-point Likert scale. Consensus was considered if > 70% of participants indicated agreement on each research priority. Results A total of 165 prehabilitation experts participated, including medical doctors, physiotherapists, dieticians, nurses, and academics across four continents. The first round identified 446 research priorities, collated within 75 unique research questions. Over two successive rounds, a list of 10 research priorities reached international consensus of importance. These included the efficacy of prehabilitation on varied postoperative outcomes, benefit to specific patient groups, ideal programme composition, cost efficacy, enhancing compliance and adherence, effect during neoadjuvant therapies, and modes of delivery. Conclusions This collaborative international study identified the top 10 research priorities in prehabilitation for patients undergoing cancer surgery. The identified priorities inform research strategies, provide future directions for prehabilitation research, support resource allocation and enhance the prehabilitation evidence base in cancer patients undergoing surgery

    The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma

    Get PDF
    Renal cell carcinoma(RCC) is not a single disease, but several histologically defined cancers with different genetic drivers, clinical courses, and therapeutic responses. The current study evaluated 843 RCC from the three major histologic subtypes, including 488 clear cell RCC, 274 papillary RCC, and 81 chromophobe RCC. Comprehensive genomic and phenotypic analysis of the RCC subtypes reveals distinctive features of each subtype that provide the foundation for the development of subtype-specific therapeutic and management strategies for patients affected with these cancers. Somatic alteration of BAP1, PBRM1, and PTEN and altered metabolic pathways correlated with subtype-specific decreased survival, while CDKN2A alteration, increased DNA hypermethylation, and increases in the immune-related Th2 gene expression signature correlated with decreased survival within all major histologic subtypes. CIMP-RCC demonstrated an increased immune signature, and a uniform and distinct metabolic expression pattern identified a subset of metabolically divergent (MD) ChRCC that associated with extremely poor survival

    Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas

    Get PDF
    Precision oncology uses genomic evidence to match patients with treatment but often fails to identify all patients who may respond. The transcriptome of these \u201chidden responders\u201d may reveal responsive molecular states. We describe and evaluate a machine-learning approach to classify aberrant pathway activity in tumors, which may aid in hidden responder identification. The algorithm integrates RNA-seq, copy number, and mutations from 33 different cancer types across The Cancer Genome Atlas (TCGA) PanCanAtlas project to predict aberrant molecular states in tumors. Applied to the Ras pathway, the method detects Ras activation across cancer types and identifies phenocopying variants. The model, trained on human tumors, can predict response to MEK inhibitors in wild-type Ras cell lines. We also present data that suggest that multiple hits in the Ras pathway confer increased Ras activity. The transcriptome is underused in precision oncology and, combined with machine learning, can aid in the identification of hidden responders. Way et al. develop a machine-learning approach using PanCanAtlas data to detect Ras activation in cancer. Integrating mutation, copy number, and expression data, the authors show that their method detects Ras-activating variants in tumors and sensitivity to MEK inhibitors in cell lines
    corecore