431 research outputs found

    Bias-voltage induced phase-transition in bilayer quantum Hall ferromagnets

    Full text link
    We consider bilayer quantum Hall systems at total filling factor ν=1\nu=1 in presence of a bias voltage Δv\Delta_v which leads to different filling factors in each layer. We use auxiliary field functional integral approach to study mean-field solutions and collective excitations around them. We find that at large layer separation, the collective excitations soften at a finite wave vector leading to the collapse of quasiparticle gap. Our calculations predict that as the bias voltage is increased, bilayer systems undergo a phase transition from a compressible state to a ν=1\nu=1 phase-coherent state {\it with charge imbalance}. We present simple analytical expressions for bias-dependent renormalized charge imbalance and pseudospin stiffness which are sensitive to the softening of collective modes.Comment: 12 pages, 5 figures. Minor changes, one reference adde

    Interacting one dimensional electron gas with open boundaries

    Full text link
    We discuss the properties of interacting electrons on a finite chain with open boundary conditions. We extend the Haldane Luttinger liquid description to these systems and study how the presence of the boundaries modifies various correlation functions. In view of possible experimental applications to quantum wires, we analyse how tunneling measurements can reveal the underlying Luttinger liquid properties. The two terminal conductance is calculated. We also point out possible applications to quasi one dimensional materials and study the effects of magnetic impurities.Comment: 38 pages, ReVTeX, 7 figures (available upon request

    Double-Layer Systems at Zero Magnetic Field

    Full text link
    We investigate theoretically the effects of intralayer and interlayer exchange in biased double-layer electron and hole systems, in the absence of a magnetic field. We use a variational Hartree-Fock-like approximation to analyze the effects of layer separation, layer density, tunneling, and applied gate voltages on the layer densities and on interlayer phase coherence. In agreement with earlier work, we find that for very small layer separations and low layer densities, an interlayer-correlated ground state possessing spontaneous interlayer coherence (SILC) is obtained, even in the absence of interlayer tunneling. In contrast to earlier work, we find that as a function of total density, there exist four, rather than three, distinct noncrystalline phases for balanced double-layer systems without interlayer tunneling. The newly identified phase exists for a narrow range of densities and has three components and slightly unequal layer densities, with one layer being spin polarized, and the other unpolarized. An additional two-component phase is also possible in the presence of sufficiently strong bias or tunneling. The lowest-density SILC phase is the fully spin- and pseudospin-polarized ``one-component'' phase discussed by Zheng {\it et al.} [Phys. Rev. B {\bf 55}, 4506 (1997)]. We argue that this phase will produce a finite interlayer Coulomb drag at zero temperature due to the SILC. We calculate the particle densities in each layer as a function of the gate voltage and total particle density, and find that interlayer exchange can reduce or prevent abrupt transfers of charge between the two layers. We also calculate the effect of interlayer exchange on the interlayer capacitance.Comment: 35 pages, 19 figures included. To appear in PR

    Dynamics and Melting of Stripes, Crystals, and Bubbles with Quenched Disorder

    Full text link
    Two-dimensional systems in which there is a competition between long-range repulsion and short range attraction exhibit a remarkable variety of patterns such as stripes, bubbles, and labyrinths. Such systems include magnetic films, Langmuir monolayers, polymers, gels, water-oil mixtures, and two-dimensional electron systems. In many of these systems quenched disorder from the underlying substrate may be present. We examine the dynamics and stripe formation in the presence of both an applied dc drive and quenched disorder. When the disorder strength exceeds a critical value, an applied dc drive can induce a dynamical stripe ordering transition to a state that is more ordered than the originating undriven, unpinned pattern.Comment: 6 pages, 7 postscript figures; Proceedings of International Workshop on Anomalous Distributions, Nonlinear Dynamics and Nonextensivity, Santa Fe, 200

    Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}=2.76 TeV

    Get PDF
    The elliptic, v2v_2, triangular, v3v_3, and quadrangular, v4v_4, azimuthal anisotropic flow coefficients are measured for unidentified charged particles, pions and (anti-)protons in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV with the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle cumulant methods are reported for the pseudo-rapidity range η<0.8|\eta|<0.8 at different collision centralities and as a function of transverse momentum, pTp_{\rm T}, out to pT=20p_{\rm T}=20 GeV/cc. The observed non-zero elliptic and triangular flow depends only weakly on transverse momentum for pT>8p_{\rm T}>8 GeV/cc. The small pTp_{\rm T} dependence of the difference between elliptic flow results obtained from the event plane and four-particle cumulant methods suggests a common origin of flow fluctuations up to pT=8p_{\rm T}=8 GeV/cc. The magnitude of the (anti-)proton elliptic and triangular flow is larger than that of pions out to at least pT=8p_{\rm T}=8 GeV/cc indicating that the particle type dependence persists out to high pTp_{\rm T}.Comment: 16 pages, 5 captioned figures, authors from page 11, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/186

    Centrality dependence of charged particle production at large transverse momentum in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm{NN}}} = 2.76 TeV

    Get PDF
    The inclusive transverse momentum (pTp_{\rm T}) distributions of primary charged particles are measured in the pseudo-rapidity range η<0.8|\eta|<0.8 as a function of event centrality in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm{NN}}}=2.76 TeV with ALICE at the LHC. The data are presented in the pTp_{\rm T} range 0.15<pT<500.15<p_{\rm T}<50 GeV/cc for nine centrality intervals from 70-80% to 0-5%. The Pb-Pb spectra are presented in terms of the nuclear modification factor RAAR_{\rm{AA}} using a pp reference spectrum measured at the same collision energy. We observe that the suppression of high-pTp_{\rm T} particles strongly depends on event centrality. In central collisions (0-5%) the yield is most suppressed with RAA0.13R_{\rm{AA}}\approx0.13 at pT=6p_{\rm T}=6-7 GeV/cc. Above pT=7p_{\rm T}=7 GeV/cc, there is a significant rise in the nuclear modification factor, which reaches RAA0.4R_{\rm{AA}} \approx0.4 for pT>30p_{\rm T}>30 GeV/cc. In peripheral collisions (70-80%), the suppression is weaker with RAA0.7R_{\rm{AA}} \approx 0.7 almost independently of pTp_{\rm T}. The measured nuclear modification factors are compared to other measurements and model calculations.Comment: 17 pages, 4 captioned figures, 2 tables, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/284

    Measurement of charm production at central rapidity in proton-proton collisions at s=2.76\sqrt{s} = 2.76 TeV

    Get PDF
    The pTp_{\rm T}-differential production cross sections of the prompt (B feed-down subtracted) charmed mesons D0^0, D+^+, and D+^{*+} in the rapidity range y<0.5|y|<0.5, and for transverse momentum 1<pT<121< p_{\rm T} <12 GeV/cc, were measured in proton-proton collisions at s=2.76\sqrt{s} = 2.76 TeV with the ALICE detector at the Large Hadron Collider. The analysis exploited the hadronic decays D0^0 \rightarrow Kπ\pi, D+^+ \rightarrow Kππ\pi\pi, D+^{*+} \rightarrow D0π^0\pi, and their charge conjugates, and was performed on a Lint=1.1L_{\rm int} = 1.1 nb1^{-1} event sample collected in 2011 with a minimum-bias trigger. The total charm production cross section at s=2.76\sqrt{s} = 2.76 TeV and at 7 TeV was evaluated by extrapolating to the full phase space the pTp_{\rm T}-differential production cross sections at s=2.76\sqrt{s} = 2.76 TeV and our previous measurements at s=7\sqrt{s} = 7 TeV. The results were compared to existing measurements and to perturbative-QCD calculations. The fraction of cdbar D mesons produced in a vector state was also determined.Comment: 20 pages, 5 captioned figures, 4 tables, authors from page 15, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/307

    Particle-yield modification in jet-like azimuthal di-hadron correlations in Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    The yield of charged particles associated with high-pTp_{\rm T} trigger particles (8<pT<158 < p_{\rm T} < 15 GeV/cc) is measured with the ALICE detector in Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV relative to proton-proton collisions at the same energy. The conditional per-trigger yields are extracted from the narrow jet-like correlation peaks in azimuthal di-hadron correlations. In the 5% most central collisions, we observe that the yield of associated charged particles with transverse momenta pT>3p_{\rm T}> 3 GeV/cc on the away-side drops to about 60% of that observed in pp collisions, while on the near-side a moderate enhancement of 20-30% is found.Comment: 15 pages, 2 captioned figures, 1 table, authors from page 10, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/350
    corecore