27 research outputs found

    Extranuclear ERα is associated with regression of T47D PKCα-overexpressing, tamoxifen-resistant breast cancer

    Get PDF
    Background: Prior to the introduction of tamoxifen, high dose estradiol was used to treat breast cancer patients with similar efficacy as tamoxifen, albeit with some undesirable side effects. There is renewed interest to utilize estradiol to treat endocrine resistant breast cancers, especially since findings from several preclinical models and clinical trials indicate that estradiol may be a rational second-line therapy in patients exhibiting resistance to tamoxifen and/or aromatase inhibitors. We and others reported that breast cancer patients bearing protein kinase C alpha (PKCα)- expressing tumors exhibit endocrine resistance and tumor aggressiveness. Our T47D:A18/PKCα preclinical model is tamoxifen-resistant, hormone-independent, yet is inhibited by 17β-estradiol (E2) in vivo. We previously reported that E2-induced T47D:A18/PKCα tumor regression requires extranuclear ERα and interaction with the extracellular matrix. Methods: T47D:A18/PKCα cells were grown in vitro using two-dimensional (2D) cell culture, three-dimensional (3D) Matrigel and in vivo by establishing xenografts in athymic mice. Immunofluoresence confocal microscopy and co-localization were applied to determine estrogen receptor alpha (ERα) subcellular localization. Co-immunoprecipitation and western blot were used to examine interaction of ERα with caveolin-1. Results: We report that although T47D:A18/PKCα cells are cross-resistant to raloxifene in cell culture and in Matrigel, raloxifene induces regression of tamoxifen-resistant tumors. ERα rapidly translocates to extranuclear sites during T47D:A18/PKCα tumor regression in response to both raloxifene and E2, whereas ERα is primarily localized in the nucleus in proliferating tumors. E2 treatment induced complete tumor regression whereas cessation of raloxifene treatment resulted in tumor regrowth accompanied by re-localization of ERα to the nucleus. T47D:A18/neo tumors that do not overexpress PKCα maintain ERα in the nucleus during tamoxifen-mediated regression. An association between ERα and caveolin-1 increases in tumors regressing in response to E2. Conclusions: Extranuclear ERα plays a role in the regression of PKCα-overexpressing tamoxifen-resistant tumors. These studies underline the unique role of extranuclear ERα in E2- and raloxifene-induced tumor regression that may have implications for treatment of endocrine-resistant PKCα-expressing tumors encountered in the clinic

    Altered inflammasome activation in neonatal encephalopathy persists in childhood

    Get PDF
    Neonatal encephalopathy (NE) is characterized by altered neurological function in term infants and inflammation plays an important pathophysiological role. Inflammatory cytokines interleukin (IL)-1 beta, IL-1ra and IL-18 are activated by the nucleotide-binding and oligomerization domain (NOD)-, leucine-rich repeat domain (LRR)- and NOD-like receptor protein 3 (NLRP3) inflammasome; furthermore, we aimed to examine the role of the inflammasome multiprotein complex involved in proinflammatory responses from the newborn period to childhood in NE. Cytokine concentrations were measured by multiplex enzyme-linked immunosorbent assay (ELISA) in neonates and children with NE in the absence or presence of lipopolysaccharide (LPS) endotoxin. We then investigated expression of the NLRP3 inflammasome genes, NLRP3, IL-1 beta and ASC by polymerase chain reaction (PCR). Serum samples from 40 NE patients at days 1 and 3 of the first week of life and in 37 patients at age 4-7 years were analysed. An increase in serum IL-1ra and IL-18 in neonates with NE on days 1 and 3 was observed compared to neonatal controls. IL-1ra in NE was decreased to normal levels at school age, whereas serum IL-18 in NE was even higher at school age compared to school age controls and NE in the first week of life. Percentage of LPS response was higher in newborns compared to school-age NE. NLRP3 and IL-1 beta gene expression were up-regulated in the presence of LPS in NE neonates and NLRP3 gene expression remained up-regulated at school age in NE patients compared to controls. Increased inflammasome activation in the first day of life in NE persists in childhood, and may increase the window for therapeutic intervention

    Case Reports1. A Late Presentation of Loeys-Dietz Syndrome: Beware of TGFβ Receptor Mutations in Benign Joint Hypermobility

    Get PDF
    Background: Thoracic aortic aneurysms (TAA) and dissections are not uncommon causes of sudden death in young adults. Loeys-Dietz syndrome (LDS) is a rare, recently described, autosomal dominant, connective tissue disease characterized by aggressive arterial aneurysms, resulting from mutations in the transforming growth factor beta (TGFβ) receptor genes TGFBR1 and TGFBR2. Mean age at death is 26.1 years, most often due to aortic dissection. We report an unusually late presentation of LDS, diagnosed following elective surgery in a female with a long history of joint hypermobility. Methods: A 51-year-old Caucasian lady complained of chest pain and headache following a dural leak from spinal anaesthesia for an elective ankle arthroscopy. CT scan and echocardiography demonstrated a dilated aortic root and significant aortic regurgitation. MRA demonstrated aortic tortuosity, an infrarenal aortic aneurysm and aneurysms in the left renal and right internal mammary arteries. She underwent aortic root repair and aortic valve replacement. She had a background of long-standing joint pains secondary to hypermobility, easy bruising, unusual fracture susceptibility and mild bronchiectasis. She had one healthy child age 32, after which she suffered a uterine prolapse. Examination revealed mild Marfanoid features. Uvula, skin and ophthalmological examination was normal. Results: Fibrillin-1 testing for Marfan syndrome (MFS) was negative. Detection of a c.1270G > C (p.Gly424Arg) TGFBR2 mutation confirmed the diagnosis of LDS. Losartan was started for vascular protection. Conclusions: LDS is a severe inherited vasculopathy that usually presents in childhood. It is characterized by aortic root dilatation and ascending aneurysms. There is a higher risk of aortic dissection compared with MFS. Clinical features overlap with MFS and Ehlers Danlos syndrome Type IV, but differentiating dysmorphogenic features include ocular hypertelorism, bifid uvula and cleft palate. Echocardiography and MRA or CT scanning from head to pelvis is recommended to establish the extent of vascular involvement. Management involves early surgical intervention, including early valve-sparing aortic root replacement, genetic counselling and close monitoring in pregnancy. Despite being caused by loss of function mutations in either TGFβ receptor, paradoxical activation of TGFβ signalling is seen, suggesting that TGFβ antagonism may confer disease modifying effects similar to those observed in MFS. TGFβ antagonism can be achieved with angiotensin antagonists, such as Losartan, which is able to delay aortic aneurysm development in preclinical models and in patients with MFS. Our case emphasizes the importance of timely recognition of vasculopathy syndromes in patients with hypermobility and the need for early surgical intervention. It also highlights their heterogeneity and the potential for late presentation. Disclosures: The authors have declared no conflicts of interes

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders
    corecore