1,906 research outputs found

    Beyond the simple Proximity Force Approximation: geometrical effects on the non-retarded Casimir interaction

    Get PDF
    We study the geometrical corrections to the simple Proximity Force Approximation for the non-retarded Casimir force. We present analytical results for the force between objects of various shapes and substrates, and between pairs of objects. We compare the results to those from more exact numerical calculations. We treat spheres, spheroids, cylinders, cubes, cones, and wings; the analytical PFA results together with the geometrical correction factors are summarized in a table.Comment: 18 pages, 19 figures, 1 tabl

    Transition-State Interactions in a Promiscuous Enzyme: Sulfate and Phosphate Monoester Hydrolysis by Pseudomonas aeruginosa Arylsulfatase.

    Get PDF
    Pseudomonas aeruginosa arylsulfatase (PAS) hydrolyzes sulfate and, promiscuously, phosphate monoesters. Enzyme-catalyzed sulfate transfer is crucial to a wide variety of biological processes, but detailed studies of the mechanistic contributions to its catalysis are lacking. We present linear free energy relationships (LFERs) and kinetic isotope effects (KIEs) of PAS and analyses of active site mutants that suggest a key role for leaving group (LG) stabilization. In LFERs PASWT has a much less negative Brønsted coefficient (βleaving groupobs-Enz = -0.33) than the uncatalyzed reaction (βleaving groupobs = -1.81). This situation is diminished when cationic active site groups are exchanged for alanine. The considerable degree of bond breaking during the transition state (TS) is evidenced by an 18Obridge KIE of 1.0088. LFER and KIE data for several active site mutants point to leaving group stabilization by active site K375, in cooperation with H211. 15N KIEs and the increased sensitivity to leaving group ability of the sulfatase activity in neat D2O (Δβleaving groupH-D = +0.06) suggest that the mechanism for S-Obridge bond fission shifts, with decreasing leaving group ability, from charge compensation via Lewis acid interactions toward direct proton donation. 18Ononbridge KIEs indicate that the TS for PAS-catalyzed sulfate monoester hydrolysis has a significantly more associative character compared to the uncatalyzed reaction, while PAS-catalyzed phosphate monoester hydrolysis does not show this shift. This difference in enzyme-catalyzed TSs appears to be the major factor favoring specificity toward sulfate over phosphate esters by this promiscuous hydrolase, since other features are either too similar (uncatalyzed TS) or inherently favor phosphate (charge).BBSRC BB/I004327/1 EPSRC EP/E019390/1

    What doesn't kill you makes you stranger: Dipeptidyl peptidase-4 (CD26) proteolysis differentially modulates the activity of many peptide hormones and cytokines generating novel cryptic bioactive ligands

    Get PDF
    Dipeptidyl peptidase 4 (DPP4) is an exopeptidase found either on cell surfaces where it is highly regulated in terms of its expression and surface availability (CD26) or in a free/circulating soluble constitutively available and intrinsically active form. It is responsible for proteolytic cleavage of many peptide substrates. In this review we discuss the idea that DPP4-cleaved peptides are not necessarily inactivated, but rather can possess either a modified receptor selectivity, modified bioactivity, new antagonistic activity, or even a novel activity relative to the intact parent ligand. We examine in detail five different major DPP4 substrates: glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), peptide tyrosine-tyrosine (PYY), and neuropeptide Y (NPY), and stromal derived factor 1 (SDF-1 aka CXCL12). We note that discussion of the cleaved forms of these five peptides are underrepresented in the research literature, and are both poorly investigated and poorly understood, representing a serious research literature gap. We believe they are understudied and misinterpreted as inactive due to several factors. This includes lack of accurate and specific quantification methods, sample collection techniques that are inherently inaccurate and inappropriate, and a general perception that DPP4 cleavage inactivates its ligand substrates. Increasing evidence points towards many DPP4-cleaved ligands having their own bioactivity. For example, GLP-1 can work through a different receptor than GLP-1R, DPP4-cleaved GIP can function as a GIP receptor antagonist at high doses, and DPP4-cleaved PYY, NPY, and CXCL12 can have different receptor selectivity, or can bind novel, previously unrecognized receptors to their intact ligands, resulting in altered signaling and functionality. We believe that more rigorous research in this area could lead to a better understanding of DPP4’s role and the biological importance of the generation of novel cryptic ligands. This will also significantly impact our understanding of the clinical effects and side effects of DPP4-inhibitors as a class of anti-diabetic drugs that potentially have an expanding clinical relevance. This will be specifically relevant in targeting DPP4 substrate ligands involved in a variety of other major clinical acute and chronic injury/disease areas including inflammation, immunology, cardiology, stroke, musculoskeletal disease and injury, as well as cancer biology and tissue maintenance in aging

    Acidity-reactivity relationships in catalytic esterification over ammonium sulfate-derived sulfated zirconia

    Get PDF
    New insight was gained into the acidity-reactivity relationships of sulfated zirconia (SZ) catalysts prepared via (NH4)2SO4 impregnation of Zr(OH)4 for propanoic acid esterification with methanol. A family of systematically related SZs was characterized by bulk and surface analyses including XRD, XPS, TGA-MS, N2 porosimetry, temperature-programmed propylamine decomposition, and FTIR of adsorbed pyridine, as well as methylbutynol (MBOH) as a reactive probe molecule. Increasing surface sulfation induces a transition from amphoteric character for the parent zirconia and low S loadings <1.7 wt %, evidenced by MBOH conversion to 3-hydroxy-3-methyl-2-butanone, methylbutyne and acetone, with higher S loadings resulting in strong Brønsted-Lewis acid pairs upon completion of the sulfate monolayer, which favored MBOH conversion to prenal. Catalytic activity for propanoic acid esterification directly correlated with acid strength determined from propylamine decomposition, coincident with the formation of Brønsted-Lewis acid pairs identified by MBOH reactive titration. Monodispersed bisulfate species are likely responsible for superacidity at intermediate sulfur loadings

    The ENIGMA Stroke Recovery Working Group: Big data neuroimaging to study brain–behavior relationships after stroke

    Get PDF
    The goal of the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Stroke Recovery working group is to understand brain and behavior relationships using well‐powered meta‐ and mega‐analytic approaches. ENIGMA Stroke Recovery has data from over 2,100 stroke patients collected across 39 research studies and 10 countries around the world, comprising the largest multisite retrospective stroke data collaboration to date. This article outlines the efforts taken by the ENIGMA Stroke Recovery working group to develop neuroinformatics protocols and methods to manage multisite stroke brain magnetic resonance imaging, behavioral and demographics data. Specifically, the processes for scalable data intake and preprocessing, multisite data harmonization, and large‐scale stroke lesion analysis are described, and challenges unique to this type of big data collaboration in stroke research are discussed. Finally, future directions and limitations, as well as recommendations for improved data harmonization through prospective data collection and data management, are provided

    Dense sampling of ethnic groups within African countries reveals fine-scale genetic structure and extensive historical admixture

    Get PDF
    Previous studies have highlighted how African genomes have been shaped by a complex series of historical events. Despite this, genome-wide data have only been obtained from a small proportion of present-day ethnolinguistic groups. By analyzing new autosomal genetic variation data of 1333 individuals from over 150 ethnic groups from Cameroon, Republic of the Congo, Ghana, Nigeria, and Sudan, we demonstrate a previously underappreciated fine-scale level of genetic structure within these countries, for example, correlating with historical polities in western Cameroon. By comparing genetic variation patterns among populations, we infer that many northern Cameroonian and Sudanese groups share genetic links with multiple geographically disparate populations, likely resulting from long-distance migrations. In Ghana and Nigeria, we infer signatures of intermixing dated to over 2000 years ago, corresponding to reports of environmental transformations possibly related to climate change. We also infer recent intermixing signals in multiple African populations, including Congolese, that likely relate to the expansions of Bantu language-speaking peoples

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma

    Get PDF
    Emerging evidence suggests that both human stem cells and mature stromal cells can play an important role in the development and growth of human malignancies. In contrast to these tumor-promoting properties, we observed that in an in vivo model of Kaposi's sarcoma (KS), intravenously (i.v.) injected human mesenchymal stem cells (MSCs) home to sites of tumorigenesis and potently inhibit tumor growth. We further show that human MSCs can inhibit the in vitro activation of the Akt protein kinase within some but not all tumor and primary cell lines. The inhibition of Akt activity requires the MSCs to make direct cell–cell contact and can be inhibited by a neutralizing antibody against E-cadherin. We further demonstrate that in vivo, Akt activation within KS cells is potently down-regulated in areas adjacent to MSC infiltration. Finally, the in vivo tumor-suppressive effects of MSCs correlates with their ability to inhibit target cell Akt activity, and KS tumors engineered to express a constitutively activated Akt construct are no longer sensitive to i.v. MSC administration. These results suggest that in contrast to other stem cells or normal stromal cells, MSCs possess intrinsic antineoplastic properties and that this stem cell population might be of particular utility for treating those human malignancies characterized by dysregulated Akt
    corecore