10 research outputs found

    Ultradeep pyrosequencing of NS3 to predict response to triple therapy with protease inhibitors in previously treated chronic hepatitis C patients.

    Get PDF
    International audienceDespite the gain in sustained virological responses (SVR) provided by protease inhibitors (PIs), failures still occur. The aim of this study was to determine if a baseline analysis of the NS3 region using ultradeep pyrosequencing (UDPS) can help to predict an SVR. Serum samples from 40 patients with previously nonresponding genotype 1 chronic hepatitis C who were retreated with triple therapy, including a PI, were analyzed. Baseline UDPS of the NS3 gene was performed on plasma and peripheral blood mononuclear cells (PBMC). Mutations conferring resistance to PIs were sought. The overall diversity of the quasispecies was evaluated by calculating the Shannon entropy (SE). Resistance mutations were found in plasma and PBMC but were not discriminating enough to predict an SVR. NS3 quasispecies heterogeneity was significantly lower at baseline in patients achieving an SVR than in those not achieving an SVR (SE of 26.98 ± 16.64 × 10(-3) versus 44.93 ± 19.58 × 10(-3), P = 0.0047). With multivariate analysis, the independent predictors of an SVR were fibrosis of stage F ≤2 (odds ratio [OR], 13.3; 95% confidence interval [CI], 1.25 to 141.096; P < 0.03) and SE below the median (OR, 5.4; 95% CI, 1.22 to 23.87; P < 0.03). More than the presence of minor mutations at the baseline in plasma or in PBMC, the NS3 viral heterogeneity determined by UDPS is an independent factor for an SVR in previously treated patients receiving triple therapy that includes a PI

    Ultradeep pyrosequencing of NS3 to predict response to triple therapy with protease inhibitors in previously treated chronic hepatitis C patients.

    No full text
    International audienceDespite the gain in sustained virological responses (SVR) provided by protease inhibitors (PIs), failures still occur. The aim of this study was to determine if a baseline analysis of the NS3 region using ultradeep pyrosequencing (UDPS) can help to predict an SVR. Serum samples from 40 patients with previously nonresponding genotype 1 chronic hepatitis C who were retreated with triple therapy, including a PI, were analyzed. Baseline UDPS of the NS3 gene was performed on plasma and peripheral blood mononuclear cells (PBMC). Mutations conferring resistance to PIs were sought. The overall diversity of the quasispecies was evaluated by calculating the Shannon entropy (SE). Resistance mutations were found in plasma and PBMC but were not discriminating enough to predict an SVR. NS3 quasispecies heterogeneity was significantly lower at baseline in patients achieving an SVR than in those not achieving an SVR (SE of 26.98 ± 16.64 × 10(-3) versus 44.93 ± 19.58 × 10(-3), P = 0.0047). With multivariate analysis, the independent predictors of an SVR were fibrosis of stage F ≤2 (odds ratio [OR], 13.3; 95% confidence interval [CI], 1.25 to 141.096; P < 0.03) and SE below the median (OR, 5.4; 95% CI, 1.22 to 23.87; P < 0.03). More than the presence of minor mutations at the baseline in plasma or in PBMC, the NS3 viral heterogeneity determined by UDPS is an independent factor for an SVR in previously treated patients receiving triple therapy that includes a PI

    Signaling pathways and mesenchymal transition in pediatric high-grade glioma

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
    corecore