28 research outputs found

    The Effect of RNA Secondary Structures on RNA-Ligand Binding and the Modifier RNA Mechanism: A Quantitative Model

    Get PDF
    RNA-ligand binding often depends crucially on the local RNA secondary structure at the binding site. We develop here a model that quantitatively predicts the effect of RNA secondary structure on effective RNA-ligand binding activities based on equilibrium thermodynamics and the explicit computations of partition functions for the RNA structures. A statistical test for the impact of a particular structural feature on the binding affinities follows directly from this approach. The formalism is extended to describing the effects of hybridizing small \modifier RNAs' to a target RNA molecule outside its ligand binding site. We illustrate the applicability of our approach by quantitatively describing the interaction of the mRNA stabilizing protein HuR with AU-rich elements [Meisner et al. (2004), Chem. Biochem. in press]. We discuss our model and recent experimental findings demonstrating the ffectivity of modifier RNAs in vitro in the context of the current research activities in the field of non-coding RNAs. We speculate that modifier RNAs might also exist in nature; if so, they present an additional regulatory layer for fine-tuning gene expression that could evolve rapidly, leaving no obvious traces in the genomic DNA sequences

    Single Bead Labeling Method for Combining Confocal Fluorescence On-Bead Screening and Solution Validation of Tagged One-Bead One-Compound Libraries

    Get PDF
    SummaryScreening of one-bead one-compound libraries by incubating beads with fluorescently labeled target protein requires isolation and structure elucidation of a large number of primary hit beads. However, the potency of the identified ligands is only revealed after time consuming and expensive larger scale resynthesis and testing in solution. Often, many of the resynthesized compounds turn out to be weak target binders in solution due to large differences between surface and solution binding affinities. For an industry style high-throughput screening (HTS) process a high false positive rate is detrimental. We have therefore combined single bead and single molecule/single cell techniques into an integrated HTS process in which the picomole amount of substance contained on one isolated hit bead is sufficient for quality control, structure determination, and precise affinity determination to the target protein in solution

    Identification of a Small Molecule Inhibitor of Importin β Mediated Nuclear Import by Confocal On-Bead Screening of Tagged One-Bead One-Compound Libraries

    Get PDF
    In eukaryotic cells, proteins and RNAs are transported between the nucleus and the cytoplasm by nuclear import and export receptors. Over the past decade, small molecules that inhibit the nuclear export receptor CRM1 have been identified, most notably,leptomycin B. However, up to now no small molecule inhibitors of nuclear import have been described. Here we have used our automated confocal nanoscanning and bead picking method (CONA) for on-bead screening of a one-bead one-compound library to identify the first such import inhibitor, karyostatin 1A. Karyostatin 1A binds importin beta with high nanomolar affinity and specifically inhibits importin alpha/beta mediated nuclear import at low micromolar concentrations in vitro and in living cells, without perturbing transportin mediated nuclear import or CRM1 mediated nuclear export. Surface plasmon resonance binding-experiments suggest that karyostatin 1A acts by disrupting the interaction between importin p and the OPase Ran. As a selective inhibitor of the importin alpha/beta import pathway, karyostatin 1A will provide a valuable tool for future studies of nucleocytoplasmic trafficking.</p

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014–2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    The Effect of RNA Secondary Structures on RNA-Ligand Binding and the Modifier RNA Mechanism: A Quantitative Model

    Get PDF
    RNA-ligand binding often depends crucially on the local RNA secondary structure at the binding site. We develop here a model that quantitatively predicts the effect of RNA secondary structure on effective RNA-ligand binding activities based on equilibrium thermodynamics and the explicit computations of partition functions for the RNA structures. A statistical test for the impact of a particular structural feature on the binding affinities follows directly from this approach. The formalism is extended to describing the effects of hybridizing small \modifier RNAs' to a target RNA molecule outside its ligand binding site. We illustrate the applicability of our approach by quantitatively describing the interaction of the mRNA stabilizing protein HuR with AU-rich elements [Meisner et al. (2004), Chem. Biochem. in press]. We discuss our model and recent experimental findings demonstrating the ffectivity of modifier RNAs in vitro in the context of the current research activities in the field of non-coding RNAs. We speculate that modifier RNAs might also exist in nature; if so, they present an additional regulatory layer for fine-tuning gene expression that could evolve rapidly, leaving no obvious traces in the genomic DNA sequences

    The effect of RNA secondary structures on RNA-ligand binding and the modifier RNA mechanism: a quantitative model.

    No full text
    RNA-ligand binding often depends crucially on the local RNA secondary structure at the binding site. We develop here a model that quantitatively predicts the effect of RNA secondary structure on effective RNA-ligand binding activities based on equilibrium thermodynamics and the explicit computations of partition functions for the RNA structures. A statistical test for the impact of a particular structural feature on the binding affinities follows directly from this approach. The formalism is extended to describing the effects of hybridizing small "modifier RNAs" to a target RNA molecule outside its ligand binding site. We illustrate the applicability of our approach by quantitatively describing the interaction of the mRNA stabilizing protein HuR with AU-rich elements. We discuss our model and recent experimental findings demonstrating the effectivity of modifier RNAs in vitro in the context of the current research activities in the field of non-coding RNAs. We speculate that modifier RNAs might also exist in nature; if so, they present an additional regulatory layer for fine-tuning gene expression that could evolve rapidly, leaving no obvious traces in the genomic DNA sequences

    mRNA stability alterations mediated by HuR are necessary to sustain the fast growth of glioma cells

    No full text
    Regulation of mRNA decay is an important mechanism controlling gene expression. Steady-state levels of mRNAs can be markedly altered by changes in the decay rate. The control of mRNA stability depends on sequences in the transcript itself and on RNA-binding proteins that dynamically bind to these sequences. A well characterized sequence motif, which has been shown to be present in many short-lived mRNAs, is the de-stabilizing AU-rich element (ARE) located at the 3’untranslated region (3’UTR) of mRNAs. HuR is an RNA-binding protein, which binds to AREs and in doing so, increases the half-life and steady state levels of the corresponding mRNA. Using Tissue Microarray technology, we found that HuR is over-expressed in human gliomas. We also found that there is a change in HuR localization from being solely in the nucleus to being expressed at high levels in the cytosol. Moreover, a positive correlation was found between total HuR levels, cytosolic localization and tumor grade. We also studied the decay rate of several HuR target mRNAs and found that these mRNAs have a slower rate of decay in glioma cell lines than in astrocytes. Finally, we have been able to decrease both the stability and steady state level of these transcripts in glioma cells using an RNA decoy. More importantly, the decoy transfected cells and cells exposed to a HuR inhibitor have reduced cell growth. In addition, pharmacological inhibition of HuR also resulted in glioma cell growth inhibition. In conclusion, our data suggest that post-transcriptional control abnormalities mediated by HuR are necessary to sustain the rapid growth of this devastating type of cancer

    The chemical hunt for the identification of drugable targets.

    No full text
    Chemical biology has emerged as a new scientific discipline to change the way scientists approach and study the interface between chemistry, biology, and physics. By integrating the knowledge base of the human genome with the power of diverse and flexible chemical technology platforms, the ultimate goal is to define the 'rules of engagement' for small molecules and their use in basic biology and in drug discovery. Herein, we highlight the current counterpoles of the chemical biology philosophy in the framework between conformational diversity and informational complexity. Expanding the growing molecular recognition information matrix into classification of diseases and immediate mechanistic in-vivo proof of concept models represent the next development phase in a field that, unlike any other due to its multidisciplinary nature, unifies basic scientists and drug discoverers
    corecore