10 research outputs found

    Local Conduction Velocity Mapping for Electrocardiographic Imaging

    Get PDF
    International audienceSlow conduction is a well-known pro-arrhythmic feature for tachycardia and fibrillation. Cardiac conduction velocity (CV) mapping can be extremely helpful for investigating unusual activation patterns. Although methods have been developed to estimate velocity vector field, from ex-vivo preparations (e.g. from optical mapping recordings), the estimation from in-vivo electrograms (EGMs) remains challenging. This paper presents a new method specifically designed for EGMs reconstructed non-invasively from body surface potentials using electrocardiographic imaging (ECGi). The algorithm is based on cardiac activation maps and assumes either a linear or quadratic wavefront shape. The proposed methodology was performed on computed and experimental data for epicardial pacing on healthy tissue. The results were compared with reference velocity vector fields and evaluated by analyzing the errors of direction and speed. The outcomes indicate that a linear wavefront is the most suited for cardiac propagation in healthy tissue

    Computation and Projection of Spiral Wave Trajectories During Atrial Fibrillation

    No full text
    To show how atrial fibrillation rotor activity on the heart surface manifests as phase on the torso, fibrillation was induced on a geometrically accurate computer model of the human atria. The Hilbert transform, time embedding, and filament detection were compared. Electrical activity on the epicardium was used to compute potentials on different surfaces from the atria to the torso. The Hilbert transform produces erroneous phase when pacing for longer than the action potential duration. The number of phase singularities, frequency content, and the dominant frequency decreased with distance from the heart, except for the convex hull

    Local Conduction Velocity Mapping for Electrocardiographic Imaging

    No full text
    Slow conduction is a well-known pro-arrhythmic feature for tachycardia and fibrillation. Cardiac conduction velocity (CV) mapping can be extremely helpful for investigating unusual activation patterns. Although methods have been developed to estimate velocity vector field, from ex-vivo preparations (e.g. from optical mapping recordings), the estimation from in-vivo electrograms (EGMs) remains challenging. This paper presents a new method specifically designed for EGMs reconstructed non-invasively from body surface potentials using electrocardiographic imaging (ECGi). The algorithm is based on cardiac activation maps and assumes either a linear or quadratic wavefront shape. The proposed methodology was performed on computed and experimental data for epicardial pacing on healthy tissue. The results were compared with reference velocity vector fields and evaluated by analyzing the errors of direction and speed. The outcomes indicate that a linear wavefront is the most suited for cardiac propagation in healthy tissue

    The development of Indo-European studies since the Neogrammarians

    No full text

    D. Die einzelnen romanischen Sprachen und Literaturen.

    No full text
    corecore