1,275 research outputs found

    Social preferences across contexts

    Get PDF
    Over the past decades, the behavior of people who do not maximize their payoff but instead seem to be other-regarding has received much attention in the (behavioral) economics literature. Many different social preference models that ideally explain such other-regarding behavior across a large span of contexts have been proposed and tested. Building on this literature, this dissertation studies social preferences in different contexts and expressions across three manuscripts. The first manuscript examines the behavior of people who avoid a situation that allows them to express social preferences. Drawing on psychological game theory, we tested whether guilt-aversion or self-image concerns could better explain this behavior. It was found that guilt-aversion, but not self-image concerns, can explain the behavior of these people. The second manuscript made use of crowdfunding donations data and showed that the reversal of the compassion fade effect when going from a separate to a joint evaluation condition extends from the lab to the field. Social preferences can also manifest themselves through people donating their time. The third manuscript examines how the severity of a catastrophe (i.e., the COVID-19 pandemic) affects the provision of catastrophe-related voluntary labor. We found a concave relationship between the weekly COVID-19-related death numbers and the amount of voluntary work provided by individuals. Thus, by drawing on prosocial behavior expressed in three different environments, this dissertation extends the current literature by studying how social preferences are influenced by the context in which they are carried out

    Interferon beta 1b following natalizumab discontinuation: one year, randomized, prospective, pilot trial

    Get PDF
    Background: Natalizumab (NTZ) discontinuation leads to multiple sclerosis reactivation. The objective of this study is to compare disease activity in MS patients who continued on NTZ treatment to those who were switched to subcutaneous interferon 1b (IFNB) treatment. Methods: 1-year randomized, rater-blinded, parallel-group, pilot study (ClinicalTrial.gov ID: NCT01144052). Relapsing remitting MS patients on NTZ for ≄12 months who had been free of disease activity on this therapy (no relapses and disability progression for ≄6 months, no gadolinium-enhancing lesions on baseline MRI) were randomized to NTZ or IFNB. Primary endpoint was time to first on-study relapse. Additional clinical, MRI and safety parameters were assessed. Analysis was based on intention to treat. Results: 19 patients (NTZ n=10; IFNB n=9) with similar baseline characteristics were included. 78% of IFNB treated patients remained relapse free (NTZ group: 100%), and 25% remained free of new T2 lesions (NTZ group: 62.5%). While time to first on-study relapse was not significantly different between groups (p=0.125), many secondary clinical and radiological endpoints (number of relapses, proportion of relapse free patients, number of new T2 lesions) showed a trend, or were significant (new T2 lesions at month 6) in favoring NTZ. Conclusions: De-escalation therapy from NTZ to IFNB over 1 year was associated with some clinical and radiological disease recurrence. Overall no major safety concerns were observed

    Dual‐Sensitivity Multiple Sclerosis Lesion and CSF Segmentation for Multichannel 3T Brain MRI

    Get PDF
    ABSTRACT BACKGROUND AND PURPOSE A pipeline for fully automated segmentation of 3T brain MRI scans in multiple sclerosis (MS) is presented. This 3T morphometry (3TM) pipeline provides indicators of MS disease progression from multichannel datasets with high‐resolution 3‐dimensional T1‐weighted, T2‐weighted, and fluid‐attenuated inversion‐recovery (FLAIR) contrast. 3TM segments white (WM) and gray matter (GM) and cerebrospinal fluid (CSF) to assess atrophy and provides WM lesion (WML) volume. METHODS To address nonuniform distribution of noise/contrast (eg, posterior fossa in 3D‐FLAIR) of 3T magnetic resonance imaging, the method employs dual sensitivity (different sensitivities for lesion detection in predefined regions). We tested this approach by assigning different sensitivities to supratentorial and infratentorial regions, and validated the segmentation for accuracy against manual delineation, and for precision in scan‐rescans. RESULTS Intraclass correlation coefficients of .95, .91, and .86 were observed for WML and CSF segmentation accuracy and brain parenchymal fraction (BPF). Dual sensitivity significantly reduced infratentorial false‐positive WMLs, affording increases in global sensitivity without decreasing specificity. Scan‐rescan yielded coefficients of variation (COVs) of 8% and .4% for WMLs and BPF and COVs of .8%, 1%, and 2% for GM, WM, and CSF volumes. WML volume difference/precision was .49 ± .72 mL over a range of 0–24 mL. Correlation between BPF and age was r = .62 (P = .0004), and effect size for detecting brain atrophy was Cohen's d = 1.26 (standardized mean difference vs. healthy controls). CONCLUSIONS This pipeline produces probability maps for brain lesions and tissue classes, facilitating expert review/correction and may provide high throughput, efficient characterization of MS in large datasets

    Brain areas with normatively greater cerebral perfusion in early life may be more susceptible to beta amyloid deposition in late life

    Get PDF
    Background: The amyloid cascade hypothesis characterizes the stereotyped progression of pathological changes in Alzheimer’s disease (AD) beginning with beta amyloid deposition, but does not address the reasons for amyloid deposition. Brain areas with relatively higher neuronal activity, metabolic demand, and production of reactive oxygen species in earlier life may have higher beta amyloid deposition in later life. The aim of this study was to investigate early life patterns of perfusion and late life patterns of amyloid deposition to determine the extent to which normative cerebral perfusion predisposes specific regions to future beta amyloid deposition. Materials and Methods: One hundred twenty-eight healthy, older human subjects (age: 56–87 years old; 44% women) underwent positron emission tomography (PET) imaging with [ 11 C]PiB for measures of amyloid burden. Cerebral perfusion maps derived from 47 healthy younger adults (age: 22–49; 47%) who had undergone single photon emission computed tomography (SPECT) imaging, were averaged to create a normative template, repre- sentative of young, healthy adults. Perfusion and amyloid measures were investigated in 31 cortical regions from the Hammers atlas. We examined the spatial relationship between normative perfusion patterns and amyloid pathophysiology. Results: The pattern of increasing perfusion (temporal lobe < parietal lobe < frontal lobe < insula/cingulate gyrus < occipital lobe; F(4,26) = 7.8, p = 0.0003) in young, healthy adults was not exactly identical to but approximated the pattern of increasing amyloid burden (temporal lobe < occipital lobe < frontal lobe < parietal lobe < insula/cingulate gyrus; F(4,26) = 5.0, p = 0.004) in older adults. However, investigating subregions within cortical lobes provided consistent agreement between ranked normative perfusion patterns and expected Thal staging of amyloid progression in AD (Spearman r = 0.39, p = 0.03). Conclusion: Our findings suggest that brain areas with normatively greater perfusion may be more susceptible to amyloid deposition in later life, possibly due to higher metabolic demand, and associated levels of oxidative stress and inflammation

    The composition of the protosolar disk and the formation conditions for comets

    Get PDF
    Conditions in the protosolar nebula have left their mark in the composition of cometary volatiles, thought to be some of the most pristine material in the solar system. Cometary compositions represent the end point of processing that began in the parent molecular cloud core and continued through the collapse of that core to form the protosun and the solar nebula, and finally during the evolution of the solar nebula itself as the cometary bodies were accreting. Disentangling the effects of the various epochs on the final composition of a comet is complicated. But comets are not the only source of information about the solar nebula. Protostellar disks around young stars similar to the protosun provide a way of investigating the evolution of disks similar to the solar nebula while they are in the process of evolving to form their own solar systems. In this way we can learn about the physical and chemical conditions under which comets formed, and about the types of dynamical processing that shaped the solar system we see today. This paper summarizes some recent contributions to our understanding of both cometary volatiles and the composition, structure and evolution of protostellar disks.Comment: To appear in Space Science Reviews. The final publication is available at Springer via http://dx.doi.org/10.1007/s11214-015-0167-

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE

    Measurement of the t t-bar production cross section in the dilepton channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The t t-bar production cross section (sigma[t t-bar]) is measured in proton-proton collisions at sqrt(s) = 7 TeV in data collected by the CMS experiment, corresponding to an integrated luminosity of 2.3 inverse femtobarns. The measurement is performed in events with two leptons (electrons or muons) in the final state, at least two jets identified as jets originating from b quarks, and the presence of an imbalance in transverse momentum. The measured value of sigma[t t-bar] for a top-quark mass of 172.5 GeV is 161.9 +/- 2.5 (stat.) +5.1/-5.0 (syst.) +/- 3.6(lumi.) pb, consistent with the prediction of the standard model.Comment: Replaced with published version. Included journal reference and DO

    Search for anomalous t t-bar production in the highly-boosted all-hadronic final state

    Get PDF
    A search is presented for a massive particle, generically referred to as a Z', decaying into a t t-bar pair. The search focuses on Z' resonances that are sufficiently massive to produce highly Lorentz-boosted top quarks, which yield collimated decay products that are partially or fully merged into single jets. The analysis uses new methods to analyze jet substructure, providing suppression of the non-top multijet backgrounds. The analysis is based on a data sample of proton-proton collisions at a center-of-mass energy of 7 TeV, corresponding to an integrated luminosity of 5 inverse femtobarns. Upper limits in the range of 1 pb are set on the product of the production cross section and branching fraction for a topcolor Z' modeled for several widths, as well as for a Randall--Sundrum Kaluza--Klein gluon. In addition, the results constrain any enhancement in t t-bar production beyond expectations of the standard model for t t-bar invariant masses larger than 1 TeV.Comment: Submitted to the Journal of High Energy Physics; this version includes a minor typo correction that will be submitted as an erratu

    Combined search for the quarks of a sequential fourth generation

    Get PDF
    Results are presented from a search for a fourth generation of quarks produced singly or in pairs in a data set corresponding to an integrated luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in 2011. A novel strategy has been developed for a combined search for quarks of the up and down type in decay channels with at least one isolated muon or electron. Limits on the mass of the fourth-generation quarks and the relevant Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a simple extension of the standard model with a sequential fourth generation of fermions. The existence of mass-degenerate fourth-generation quarks with masses below 685 GeV is excluded at 95% confidence level for minimal off-diagonal mixing between the third- and the fourth-generation quarks. With a mass difference of 25 GeV between the quark masses, the obtained limit on the masses of the fourth-generation quarks shifts by about +/- 20 GeV. These results significantly reduce the allowed parameter space for a fourth generation of fermions.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Z/gamma* + b-jet cross section in pp collisions at 7 TeV

    Get PDF
    The production of b jets in association with a Z/gamma* boson is studied using proton-proton collisions delivered by the LHC at a centre-of-mass energy of 7 TeV and recorded by the CMS detector. The inclusive cross section for Z/gamma* + b-jet production is measured in a sample corresponding to an integrated luminosity of 2.2 inverse femtobarns. The Z/gamma* + b-jet cross section with Z/gamma* to ll (where ll = ee or mu mu) for events with the invariant mass 60 < M(ll) < 120 GeV, at least one b jet at the hadron level with pT > 25 GeV and abs(eta) < 2.1, and a separation between the leptons and the jets of Delta R > 0.5 is found to be 5.84 +/- 0.08 (stat.) +/- 0.72 (syst.) +(0.25)/-(0.55) (theory) pb. The kinematic properties of the events are also studied and found to be in agreement with the predictions made by the MadGraph event generator with the parton shower and the hadronisation performed by PYTHIA.Comment: Submitted to the Journal of High Energy Physic
    • 

    corecore