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Dual-Sensitivity Multiple Sclerosis Lesion and CSF Segmentation
for Multichannel 3T Brain MRI
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Medical Image Analysis Center, University Hospital Basel, Switzerland (DSM).

A B S T R A C T

BACKGROUND AND PURPOSE: A pipeline for fully automated segmentation of 3T brain MRI scans in multiple sclerosis
(MS) is presented. This 3T morphometry (3TM) pipeline provides indicators of MS disease progression from multichannel datasets
with high-resolution 3-dimensional T1-weighted, T2-weighted, and fluid-attenuated inversion-recovery (FLAIR) contrast. 3TM
segments white (WM) and gray matter (GM) and cerebrospinal fluid (CSF) to assess atrophy and provides WM lesion (WML)
volume.
METHODS: To address nonuniform distribution of noise/contrast (eg, posterior fossa in 3D-FLAIR) of 3T magnetic resonance
imaging, the method employs dual sensitivity (different sensitivities for lesion detection in predefined regions). We tested this
approach by assigning different sensitivities to supratentorial and infratentorial regions, and validated the segmentation for
accuracy against manual delineation, and for precision in scan-rescans.
RESULTS: Intraclass correlation coefficients of .95, .91, and .86 were observed for WML and CSF segmentation accuracy and
brain parenchymal fraction (BPF). Dual sensitivity significantly reduced infratentorial false-positive WMLs, affording increases
in global sensitivity without decreasing specificity. Scan-rescan yielded coefficients of variation (COVs) of 8% and .4% for WMLs
and BPF and COVs of .8%, 1%, and 2% for GM, WM, and CSF volumes. WML volume difference/precision was .49 ± .72 mL over
a range of 0–24 mL. Correlation between BPF and age was r = .62 (P = .0004), and effect size for detecting brain atrophy was
Cohen’s d = 1.26 (standardized mean difference vs. healthy controls).
CONCLUSIONS: This pipeline produces probability maps for brain lesions and tissue classes, facilitating expert re-
view/correction and may provide high throughput, efficient characterization of MS in large datasets.
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Introduction
Multiple sclerosis (MS) is a chronic inflammatory and degener-
ative disease of the CNS, and a major contributor to physical
disability and cognitive dysfunction.1,2 Although gray matter
(GM) degeneration is also observed, MS mainly affects the
white matter (WM), with multiple demyelinating lesions that
are the name-giving hallmark of MS. Together with parenchy-
mal atrophy, magnetic resonance imaging (MRI)-based detec-
tion and tracking of MS lesions yields established diagnostic
and therapeutic outcome markers.3–5

Several algorithms for automated lesion volumetrics have
been introduced,6–12 but most are invariably tailored to specific
image characteristics of resolution and contrast and not easily

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

adapted to different acquisition protocols. They also commonly
lack interfaces to introduce protocol-specific regional heuris-
tics. A well-established principle used in automated WM lesion
(WML) segmentation is to define lesions as outliers of the WM
intensity distribution,9,10 rather than seeking to model and seg-
ment them directly. This is most commonly implemented via
an expectation-maximization (EM) algorithm,13 or a fuzzy C-
means classifier instead of EM in conjunction with anatomical
atlases,8 or the introduction of a trimmed-likelihood estimator
(instead of the maximum-likelihood commonly implemented
in EM) to improve robustness against outliers that otherwise
bias the building of intensity distribution models.14 More com-
plex pipelines isolate regions like the cerebellum with typical
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signal bias into a separate segmentation,7 similar in principle
to the dual-sensitivity approach in the 3T morphometry (3TM)
pipeline presented here.

An intuitive two-phase approach separated the task of WML
detection from the task of delineation.6 It also used outliers
to WM intensity distribution as initial WML candidates, but
obtained the final segmentation through a subsequent region-
growing approach from the initial seed points, which proffers
the advantage of considering local contrast (vs. absolute inten-
sity) in the final delineation and thus can produce segmenta-
tions that agree well with the visual interpretation of an ex-
pert. Trained classifiers can provide excellent accuracy of le-
sion segmentation,15 but multiple reference segmentations are
commonly required for training, which implies that a retraining
would be necessary when the underlying image characteristics
change. Some level of robustness can be achieved by the addi-
tion of spatial priors and intensity normalization,16 but the need
for retraining remains, which is costly if a new reference train-
ing set has to be obtained. For additional background, we refer
the reader to a comprehensive review of WML segmentation
methods.17

The 3TM strategy does not represent a new segmentation
algorithm per se, but a comprehensive processing pipeline to
extend the applicability of such standalone algorithms with a
larger constraint framework to facilitate routine application of
MR morphometry, similar in concept to the size and intensity
constraints described previously.18 Our main objectives in the
present study were to: (1) incorporate an additional level of ab-
straction as a mechanism to translate anatomical heuristics into
standard (Euclidian) spatial priors; (2) facilitate adjustments and
recalibration to address changes in image acquisition parame-
ters, scanner hardware, or software changes or scanner drift;
and (3) provide an intuitive framework to address the spatial
variation of image characteristics (eg, SNR or contrast) that be-
come increasingly relevant at higher field strengths.

Given the wide and skewed distribution of lesion burden
in longstanding MS, most clinical uses of MR volumetry, both
longitudinal and cross sectional, tend to benefit more from ro-
bustness and precision than accuracy, ie, some level of sys-
tematic bias is preferable to the reduced sensitivity that is com-
monly introduced when tuning for optimal accuracy. This effect
tends to be exacerbated as the range of disease burden widens.
For example, the importance of addressing intensity variations
was demonstrated by the significant improvement of k-Nearest
Neighbor (kNN)-algorithms through different forms of intensity
normalizations.16

The 3TM method presented herein defines MS WMLs as
outliers in the image signal intensity distribution of WM,10

using an EM algorithm13 and a WM segmentation map as a
spatial prior. Unlike the abovementioned methods, no generic
probabilistic atlas is used as an anatomical prior. This reflects
our current experience that overall accuracy and particularly
sensitivity for juxtacortical lesions critically depends on
accurate spatial priors. For such areas of high anatomical
variance, in our experience, more accurate priors are obtained
by direct segmentation than by an intersubject registration,
despite the presence of pathology. A configurable set of
heuristic rules corrects misclassifications in the anatomical
prior (WM, gray matter [GM], cerebrospinal fluid [CSF]; for
definitions, see Table 1) that originate from common artifacts or
pathology.

Table 1. Definitions

Term/Metric Definition/Description

WM Cortical and subcortical white matter
GM Cortical and subcortical gray matter
cGM, cerGM Cortical and cerebellar GM, respectively
CSF Cerebrospinal fluid, including cortical and

ventricular (lateral, third and fourth ventricles),
and subarachnoid space overlying the brain
surface

vCSF Ventricular CSF, portion of the CSF class
comprising the lateral, third and fourth ventricles

ICV Intracranial volume, comprising all brain
parenchyma including cortical and ventricular
CSF, excluding the dura, ending inferiorly at the
medulla. Segmented as part of the pipeline
preprocessing (see Table 2, step 3)

BPF Brain parenchymal fraction, defined as 1-CSF/ICV,
ie, brain parenchymal volume, normalized by the
total intracranial volume

WML White matter lesions, defined as regions of
abnormally hyperintense (FLAIR, T2),
exclusively within the WM

Infratentorial
region

Anatomical structures inferior to the cerebellar
tentorium, including structures of the cerebellum
and brainstem. Defined based on the anatomical
parcellation in the 3TM pipeline (see Table 2,
step 4)

A “dual sensitivity” concept is introduced in our pipeline,
which compiles the final segmentation from multiple runs of
the EM algorithm at different sensitivity settings for predefined
anatomical regions. The applied dual sensitivity concept de-
parts from the assumption of spatially constant WM or WML
properties, but instead builds on the premise that WM tissue
properties vary regionally, and that this variation is exacerbated
with advanced diffuse disease burden and further modulated by
spatially variant noise of MRI scan sequences and the increas-
ing inhomogeneity of higher field magnets. This is of critical
relevance to the application of automated morphometry with
a wide spectrum of disease burden and a background of spo-
radically changing MR protocols. The application of MS lesion
morphometry in routine clinical care further implies a trade-off
between sensitivity and specificity that varies based on disease
severity and duration: sensitivity is paramount in new and low
disease burden, where false positives are preferable to false
negatives in the assessment and monitoring of disease activ-
ity, which is crucial for treatment evaluation. With advanced
(high) disease burden, robustness and precision become more
important, and the manual correction and detection of change
becomes prohibitive in effort.

A key feature of our 3TM method is an easy parameter tun-
ing to optimize between varying and competing demands for
sensitivity and specificity, a rationale arising from the objec-
tive of applying automated segmentation not only in controlled
studies but also in clinical routine. This is realized by its mod-
ular design and the consistent exposure of parameters as well
as abstraction layers for defining heuristic rule sets. Common
reasons for adjustments are: (1) the need for higher sensitivity
based on MS disease duration and severity; (2) the relative reli-
ability of the different MRI channels and their specificity for
segmentation; (3) the prevalence of false positives due to
sequence-specific artifacts; and (4) the implementation of
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Table 2. 3TM Pipeline Outline

Module Objective Method Parameters

1 Bias field correction Removes intensity variation due to
in-homogeneities of coil sensitivity

N434 Three resolution levels, with
fourfold subsampling

2 Coregistration Spatially aligns all series of the exam
(FLAIR, T2) to the reference series
(T1); removes low-level spatial
distortions

BRAINS/ITK22 6, 7, 12 affine degrees of freedom
+ BSpline with 5 × 5 × 5 grid,
mutual information similarity
criterion

3 ICV/brain mask Skull stripping and ICV mask generation BET23 Based on T2, repeat runs with
parameter range and final voting

4 Anatomic
parcellation

Tissue class segmentation and anatomical
parcellation. Serves as a rule base for
heuristics of step 6 and also as a basis
for spatial prior maps of step 8

Freesurfer27 Full parcellation including cortical
tessellation (recon-all)

5 Intensity
normalization

Global matching of intensity distributions
to a reference scan set (1 per channel,
selected from the study dataset).
Enables absolute intensities in heuristics
of step 6

Custom35 Computes global shift and scale
from weighted WM, GM, and
CSF class comparisons

6 Heuristic rules Correct misclassifications in the
anatomical parcellation by comparison
with the coregistered FLAIR image

Custom See Table 3

7 Spatial prior maps Generate individual tissue probability
maps for the spatial distribution of
WM, GM, and CSF

Custom Based on the parcellation in step 4

8 EM Tissue class (WM, GM, CSF) and WML
segmentation

Custom EM, based
on prior work10

Mahalanobis distance 2.3 for the
supratentorial region and 3.0 for
the infratentorial region

9 Postprocessing Island removal and FP reduction Custom Minimal lesion size = 3 mm

Note: Listed in sequence are the image processing steps of the 3T morphometry (3TM) automated MS lesion and tissue class segmentation. Principal outputs are
anatomical parcellation-label maps and probability maps for white matter (WM), gray matter (GM), cerebrospinal fluid (CSF), and white matter lesions (WMLs).
ICV = total intracranial volume; BET = Brain Extraction Tool; EM = expectation maximization; FP = false positive; FLAIR = fluid-attenuated inversion recovery.

Table 3. Heuristic Rule Set for Correcting Misclassifications

Rule Location of FP/FN Description Target Reference Z D

1 Choroid plexus FN Hyperintensities inside the lateral
ventricles are likely choroid plexus

vCSF CSF 3.0 –

2 Periventricular Halo (FN) Mild hyperintensities at the edges of
the lateral ventricles are likely
WMLs

vCSF WM 1.8 1

3 Cortical GM FP Hyperintense GM >8 mm from the
cortical surface is likely a WML

cGM GM 2.5 >8

4 Cerebral GM FP Very hyperintense GM is likely a
WML irrespective of cortex
proximity

GM GM 4.0 –

5 Cerebellar GM FP Hyperintense GM in cerebellum is
likely a WML

cerGM GM 3.0

6 Caudate FP Hyperintense caudate is likely a WML Caudate Caudate 3.0

Note: A sequence of customizable rules is applied to correct misclassifications in the T1-based anatomical parcellation. The reference image for the intensity rules in
the presented configuration was the fluid-attenuated inversion-recovery image. Target = the label class where misclassifications are suspected; Reference = the label
class used to build a reference intensity distribution; Z = Z-score threshold, eg, for rule 3: any voxel labeled as cortical gray matter (GM) with intensities more than 2.5
standard deviations above the mean GM intensity is relabeled. D = minimum or maximum distance in millimeter away from the boundary of the reference structure;
vCSF = ventricular cerebrospinal fluid; cGM = cortical GM; cerGM = cerebellar GM; FP/FN = false positive/negative; WML = white matter lesion.

heuristic rules to automatically recover from common false neg-
atives like the misclassification of subcortical lesions as GM, or
false positives from misclassifications of the choroid plexus as
WMLs.

Methods
Subjects

Our test cohort included 29 patients with MS (20 women), age
47 ± 10 years (mean ± SD, range 24–70 years), with disease

duration 12.5 ± 6.5 years (range 1–27 years) and Expanded
Disability Status Scale (EDSS) scores 2.5 ± 1.6 (median ± SD;
range 0–6). Disease subtypes were relapsing-remitting (n = 21),
secondary progressive (n = 5), primary progressive (n = 2), and
clinically isolated demyelinating syndrome (n = 1). The scan-
rescan experiment included a different set of another 13 patients
with MS (50 ± 8 years old, with 18 ± 10 years disease duration)
and 15 healthy volunteers (38 ± 10 years old); these images
have contributed to separate studies, in which the recruitment
and acquisition procedures have been detailed.19,20 The patients
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Table 4. Comparison of WML Segmentation Accuracy

LST 3TM Single 3TM Dual

Sensitivity .28 ± .13 .32 ± .14 P = .03 .46 ± .11 P < .01
Specificity 1.00 ± .00 1.00 ± .00 P = .13 .99 ± .01 P < .01
Dice .40 ± .14 .42 ± .15 P = .05 .51 ± .11 P < .01
Jaccard .26 ± .11 .27 ± .11 P = .07 .35 ± .10 P < .01
PPV .80 ± .12 .64 ± .18 P < .01 .61 ± .13 P < .01
mHD 6.90 ± 6.37 5.71 ± 3.89 P = .07 4.57 ± 3.82 P < .01
TPR .26 ± .08 .40 ± .10 P < .01 .44 ± .11 P < .01
ICC .73 .86 .95

Note: Data are mean ± standard deviation unless otherwise indicated. White mat-
ter lesion (WML) segmentation accuracy of single- and dual-sensitivity approaches
on segmentation performance, and comparison with a statistical parametric map-
ping/lesion segmentation tool (SPM/LST). Reported as mean ± standard devia-
tion; P-values report Wilcoxon signed rank test comparison (single sensitivity to
LST and dual to single sensitivity). All metrics, except positive predictive value
(PPV), confirm significantly improved accuracy for the dual-sensitivity approach.
Dice = Dice overlap coefficient;28 Jaccard = Jaccard overlap coefficient; mHD =
mean Hausdorff Distance; TPR = true positive rate; ICC = intraclass correlation
coefficient; 3TM = 3T morphometry. The data shown in this table comprise the
29 gold-standard cases only, ie, cases do not overlap with the subjects evaluated
in the scan-rescan experiment (Fig 4).

Table 5. Comparison of CSF Segmentation Accuracy

LST 3TM Single and Dual

Sensitivity .85 ± .17 .76 ± .06 P<.01
Specificity .90 ± .03 .96 ± .01 P<.01
Dice .74 ± .08 .78 ± .05 P<.01
Jaccard .59 ± .10 .65 ± .07 P<.01
PPV .67 ± .07 .81 ± .06 P<.01
mHD 2.20 ± .21 2.00 ± .22 P<.01
TPR .67 ± .28 .33 ± .16 P<.01
ICC .49 .91

Note: Data are mean ± standard deviation unless otherwise indicated. Cere-
brospinal fluid (CSF) segmentation accuracy of statistical parametric morphome-
try/lesion segmentation tool (SPM/LST) and 3T morphometry (3TM) compared
to manual expert delineation. Reported as mean ± standard deviation; P-values
report Wilcoxon signed rank test comparison to LST. Note that CSF segmenta-
tion is identical for single and dual sensitivity. Dice = Dice overlap coefficient;28

Jaccard = Jaccard overlap coefficient; PPV = positive predictive value; mHD =
mean Hausdorff distance; TPR = true positive rate; ICC = intraclass correlation
coefficient. The data shown in this table comprise the 29 gold-standard cases only,
ie, cases do not overlap with the subjects evaluated in the scan-rescan experiment
(Fig 4).

Table 6. Effect of the Dual-Sensitivity Option on the Reduction of
Infratentorial WML False Positives

Total WML volume 9.2 ± 10.3 (.4-40.3) mL
Infratentorial WML volume .1 ± .2 (.0-.8) mL
Infratentorial WML volume 3.5 ± 8.6 (.0-46.9) %
Infratentorial false positives .1 ± .2 (.0-.8) mL
False positive reduction 16.0 ± 19.3 (.0-83.0) %

Note: While, on average, infratentorial lesion volume comprised less than 5% of
the total lesion burden, the region was responsible for up to 80% of false positives.
Use of the dual-sensitivity approach yielded an average 16% reduction in false
positives. Data are in mean ± standard deviation (range). WML = white matter
lesion.

with MS were selected to represent a broad spectrum of disease
severity to assess accuracy and precision of WML volume and
brain atrophy. All subjects were scanned with written informed
consent, which was approved by the local ethics committee of
Partners Health Care. This human research was in compliance
with the Helsinki Declaration.21

Fig 1. Example segmentations for 3 patients with multiple sclero-
sis with mild (A), moderate (B), and severe lesion burden (C), re-
spectively. Image planes from left to right represent axial, sagittal,
and coronal views. Lesion and cerebrospinal fluid segmentations are
shown as orange and blue outlines, respectively.

MRI

The brain MRI acquisition protocol (3T Siemens Skyra,
20-channel head coil) comprised three 3-dimensional high-
resolution sequences with T1-, T2-, and fluid-attenuated
inversion-recovery (FLAIR)-weighting, optimized in contrast
for depicting WM/GM interfaces, CSF, and WMLs, respec-
tively. All sequences were sagittally acquired, covering the
whole head, with 1 mm isotropic voxel size. The additional MRI
protocol details were: a T1-weighted gradient echo (TE/TR =
2.96/2,300 milliseconds, TI = 900 milliseconds, flip angle =
9°), T2 spin echo (TE/TR = 300/2,500 milliseconds, echo train
length = 160) and T2-FLAIR (TE/TR = 389/5,000 millisec-
onds, TI = 1,800 milliseconds, echo train length = 248).

Segmentation Pipeline: Preprocessing

The main steps of the pipeline are outlined in Table 2. Key
steps are spatial coregistration of the three core MR sequences,
anatomical parcellation with subsequent heuristic correction of
common misclassifications, and an EM algorithm to determine
the final WM, GM, CSF, and WML segmentations. WMLs
were classified as outliers in the WM intensity distribution,
applied with dual sensitivity settings for the supratentorial and
infratentorial regions, respectively, meaning that the intensity
distributions for normal tissue and the outlier threshold esti-
mates were obtained separately for each region. The pipeline
is modular and utilizes a combination of existing and custom
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methods for each module, as detailed in Table 2. The specific
methods for the individual steps are exchangeable.

The intraexam image registration contains affine and non-
rigid transformations22 to harmonize the varying amounts
of spatial distortions and protocol-specific distortion correc-
tions present (eg, common differences in distortion correction
between the T1 gradient-echo and T2 and FLAIR spin-echo-
based sequences).

The intracranial volume (ICV) mask was obtained using
a variation of the Brain Extraction Tool (BET) algorithm.23

The T2 series was used as the input to BET to capture the
subarachnoid space along the outer brain contour and avoid
clipping of cortical CSF. For better robustness, BET was run
on a consecutive range of parameters (fractional threshold
and radius), summing the results at each step to form a
cumulative probability map. This map was then thresholded
at an empirically predefined level (the same for all subjects).

While a lesion-filling scheme24,25 is possible and compatible
with this pipeline, it was not used, since the anatomical parcel-
lation already segmented T1-hypointensities, and misclassifica-
tions are effectively captured by the heuristic rule set (see step 6
in Table 2 and also Table 3). While lesion-filling is indicated for
gray-white distinctions, its effect on whole-brain measurements
has shown to be negligible.26

Atlas-Based Anatomical Parcellation and Heuristic Rule Set

The 3TM pipeline includes an atlas-based anatomical parcel-
lation as a preprocessing step (step 4 in Table 2). This auto-
mated labeling of cortical and subcortical regions, and initial
GM, WM, and CSF tissue classes, is performed via a stan-
dard Freesurfer27 pipeline (version 5.3), based on the T1- and

a coregistered FLAIR series. It produces voxel-wise labeling
based on a template atlas containing 120 distinct anatomical
structures. These labels are used to define regions of interest
for the heuristic rules listed in Table 3, and to generate initial
tissue probability maps of WM, GM, and CSF for the EM-
segmentation step. We use the term parcellation to distinguish
the results of this step from the final segmentations of the entire
pipeline, and to emphasize their use as anatomical priors rather
than for direct morphometry. Summary definitions of the key
compartments are given in Table 1.

A hierarchical heuristic rule system was implemented to eas-
ily compile rules for correcting misclassifications in the above
T1-based anatomical parcellation (Table 3). To allow tuning for
a particular protocol, the system is extendable and constrained
only by the detail and quality of the anatomical parcellation that
defines the rules. Such binding via anatomical labels and class
hierarchies rather than spatial coordinates provides an ontology
that connects segmentation tuning with higher level workflow
systems and knowledge bases.

The rule mechanism includes options for intensity and dis-
tance thresholds. Euclidian distance maps based on anatomi-
cal structures enable straightforward implementation of heuris-
tics based on anatomical location. Intensity thresholds are im-
plemented as Z-scores relative to a reference structure. For
example, rule 3 (Table 3) computes the FLAIR intensity dis-
tribution of all voxels classified as cortical GM and flags (as
potential WMLs) all voxels more than 8 mm from the cortical
surface and with intensities more than 2.5 standard deviations
above the mean FLAIR intensity of GM. This addresses the
common issue of false-negative cortical lesions labeled as corti-
cal GM.

Fig 2. Frequency map of false positives from 20 randomly selected subjects, overlaid on the T1 of a single subject selected as reference. The
color overlay shows the frequency of false positive lesions segmented by the automated pipeline. A = normal mode, B = dual sensitivity. A
significant reduction in false positive white matter lesions (WMLs) is apparent for the infratentorial region. While infratentorial WMLs accounted
for less than 5% of the total lesion burden, this region was responsible for up to 80% (mean 16 ± 19%) of all the false positives (Table 6).
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Fig 3. 3T morphometry (3TM) segmentation results compared to manual gold standard, for white matter lesion (WML) volume, cerebrospinal
fluid (CSF), brain parenchymal fraction (BPF), and total intracranial volume (ICV). The solid (blue) line is a linear regression, and the dashed
(green) line represents unity.

The final segmentation is produced by an EM-segmenter
that models WMLs as outliers from the normal WM tissue
class via a Mahalanobis distance.10 All three scans (T1, T2, and
FLAIR) are used in a multichannel approach, with individual
weights per class, with FLAIR the most heavily weighted and
T2 the least (Table 2, step 8) to minimize false positives from
CSF partial volume effects.12 In the dual-sensitivity option, the
EM step was executed at two different Mahalanobis thresholds
for segmenting supratentorial and infratentorial lesions, respec-
tively. In our implementation, the infratentorial region com-
prises all cerebellar and brainstem structures and is identified
automatically based on the automated anatomical parcellation
(Table 2, step 4).

Segmentation postprocessing included a study-specific
threshold of the probability maps produced by the EM seg-
menter, followed by speckle filtering and a minimal lesion size
criterion of five contiguous voxels, equivalent to a length of
circa 3 mm in any direction (Table 2, step 9). The minimal
lesion size was implemented via 3-dimensional connectivity
applied to the lesion map to identify objects (islands) below a
fixed size threshold.

Validation

The method was validated for WML and CSF segmentation
accuracy against manual delineation by an expert operator on
the subjects described above, chosen as representative of a wide
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Fig 4. Bland-Altman plots for the scan-rescan experiment, in which 15 healthy volunteers (green triangles) and 13 patients with multiple
sclerosis (MS) (black x) were scanned twice. The plots show the precision of the automated unedited segmentation for total volumes of white
matter (WM), WM lesions volume (LV), gray matter (GM), cerebrospinal fluid (CSF), total intracranial volume (ICV), and brain parenchymal
fraction (BPF).

spectrum of disease severity in both brain lesion burden and at-
rophy, with the expert blinded to both patients’ characteristics
and 3TM segmentation results. The manual lesion identification
and contouring was performed by a postdoctoral fellow, medi-
cal doctor (S. Tummala), with 3 years of experience in MS-MRI
analysis in the Laboratory for Neuroimaging Research (LNR).
His work was supervised by a faculty member, medical doctor
(S. Tauhid), with 8 years of experience in LNR. Any discrep-
ancies were resolved by a senior faculty member, the LNR
director (R. Bakshi). Precision was evaluated in an additional
scan-rescan experiment of 13 patients with MS and 15 healthy
volunteers, where subjects were scanned twice within hours,
leaving the scanner in between.19,20

To estimate the effect of the dual-sensitivity option on
WML segmentation, the 3TM pipeline was also run at a sin-
gle (global) sensitivity setting, using the settings of the supra-
tentorial compartment. Note that, in the tested configuration,
the dual-sensitivity option affects only the WML segmentation
and leaves GM, WM, and CSF segmentations unchanged. For
further comparison, the validation dataset was also processed
by the LST lesion segmentation algorithm (available through
SPM).6

Statistical Analysis

Segmentation accuracy was assessed by comparing total WML
volumes, as structure overlap using the Dice and Jaccard simi-
larity coefficients28,29 and the mean Hausdorff distance. Speci-
ficity was measured as TN/(FP+TN), with TN and FP denoting
true negatives and false positives, respectively. Positive pre-

dictive value (PPV) and true positive rate (TPR) are also re-
ported. Group comparisons between methods and between
clinical subgroups were evaluated using a Wilcoxon signed
rank test. Accuracy was assessed by comparison of segmented
volumes to the manual gold-standard, using intraclass corre-
lation (ICC) and linear regression. Scan-rescan precision was
evaluated using Bland-Altman plots.30 Comparisons for bias
between methods and relations to clinical and demographic
variables were evaluated with direct linear regression. Effect
size for detecting brain atrophy was assessed by the standard-
ized mean difference (Cohen’s d ).31 All statistical tests were
performed in Matlab (R2016b, Mathworks Inc., Natick MA,
USA).

Results
Results of the validation against manual delineation are sum-
marized in Tables 4 and 5. ICCs between manual and au-
tomated methods were .95 and .91 for WML and CSF seg-
mentation, respectively. An ICC of .86 was observed for
brain parenchymal fraction (BPF, computed as 1-CSF/ICV).
The 3TM method produced similar or improved segmenta-
tion accuracy compared to LST (Table 5), and significant im-
provements were observed by the dual sensitivity approach
(Table 6).

Examples of segmentations of WMLs and CSF for low,
medium, and high disease burden are shown in Figure 1.
A summary frequency map of false positives is shown in
Figure 2. Total WML volume was 9.2 ± 10.3 mL (Table 6).
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Fig 5. Relationship between white matter lesions (WML) volume and disease duration (top) and Expanded Disability Status Scale (EDSS)
score (bottom). x (black) = Automated 3T morphometry (3TM) segmentation, o (blue) = manual WML segmentation. Dashed lines show linear
regression fits for both methods.

While infratentorial WMLs accounted for less than 5% of the
total lesion burden, the region was responsible for up to 80%
(mean 16 ± 19%) of all false positives (Table 6).

A direct comparison between manual (expert) and auto-
mated (3TM) segmentation is shown in Figure 3. The scan-
rescan precision was high for measurements of all segmented
tissue classes (WM, GM, CSF, WML, and ICVs) as well as de-
rived BPF metrics, as shown in Bland-Altman plots in Figure 4.
The scan-rescan experiment yielded coefficients of variation
(COVs) of 8% and .4% for automated WMLs and BPF and
COVs of .8%, 1%, and 2% for GM, WM, and CSF volumes,
respectively. Absolute WML volume difference/precision was
.49 ± .72 mL over a WML range of 0–24 mL. Relations between
manual and automated WML volume and disease duration as
well as EDSS are shown in Figure 5. Relations between manual
and automated BPF and disease duration as well as EDSS are

shown in Figure 6. Direct correlation between age and 3TM-
derived BPF was r = .62 (n = 29, P = .0004) and r = .58 (P =
.001) for automated and manually derived BPF, respectively.
Group comparisons between WML volume and BPF for clin-
ical subtypes are shown in Figure 7. The cohort was too small
and unbalanced with respect to clinical subgroups to reach sig-
nificant power, but trends are discernible. WML volumes and
BPF for the clinical subgroups were not significantly different
between manual and automated methods. Effect size for de-
tecting brain atrophy via automated BPF was d = 1.26 for the
entire cohort (29 MS and 15 HC) and d = 1.04 for age-matched
cohorts (23 MS and 12 HC), respectively. An effect size above
.8 is considered large and above 1.2 very large.31,32 However,
this effect size should be interpreted as representative for a
cohort with a wide range of disease burden as selected here,
and not necessarily generalizable to a random sample. A group
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Fig 6. Relationship between brain parenchymal fraction (BPF) and disease duration (top) and Expanded Disability Status Scale (EDSS) score
(bottom). x (black) = Automated 3T morphometry (3TM) segmentation, o (blue) = manual white matter lesion segmentation. Dashed lines
show linear regression fits for both methods.

comparison between the 29 patients with MS and 15 healthy
controls is shown in Figure 8. Many standard metrics of segmen-
tation performance are sensitive to the size of objects compared;
hence, cases with lower WML burden tend to be consistently
rated lower. This effect is shown in a group comparison of
segmentation performance for three categories of WML bur-
den in Figure 9.

Discussion
A fully automated pipeline for the segmentation of WMLs and
CSF from high-resolution multichannel MRI was presented and
validated on a cohort of patients with MS and healthy con-
trol subjects. A modular framework enabled high flexibility
for implementing a complex, multistep image analysis pipeline
that exposes a broad range of algorithmic parameters and en-

ables adaptation by configuration rather than reimplementa-
tion. Compared to established, existing methods for measuring
morphometric parameters of structural brain damage,6–8,10–12

the presented 3TM pipeline introduces a dual-sensitivity con-
cept and heuristic priors to provide flexibility in processing
heterogeneous MRI datasets. By testing the pipeline on a pop-
ulation of subjects showing a wide range of structural brain
abnormalities, we provided evidence of such flexibility while
maintaining high accuracy and precision performance.

Lesion filling and probabilistic atlases were not used in the
tested implementation, but could easily be integrated into the
modular pipeline concept. For example, if relative GM ver-
sus WM atrophy is used as an outcome metric, lesion fill-
ing approaches have proven beneficial.25 Comparison with
manual delineation showed good agreement with a low and
fairly consistent bias in the total volume of both CSF and
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Fig 7. Group comparison of automated MRI segmentation results
between relapsing (pooled clinically isolated syndrome + relapsing-
remitting, n = 22) and progressive (pooled primary progressive +
secondary progressive, n = 7) multiple sclerosis (MS) subtypes.
Trends for higher disease severity (lower BPF) in progressive MS
are discernible, but not statistically significant (P > .1) perhaps due
to the small and unbalanced cohort. Only the results of automated
segmentation are shown; the automated and manual metrics did not
differ significantly for the relapsing and progressive subgroups. BPF
= brain parenchymal fraction; N = number of patients.

WMLs. Since the overall intraclass correlation with expert
segmentation is high (ICCWML = .95, ICCCSF = .91), we in-
terpret this bias as mostly a result of differences in the working
definitions of “hyperintense WM,” ie, an issue of calibrating
contrast between manual and automated methods. Such sys-
tematic bias does not affect longitudinal or group comparisons
and can be addressed by additional calibration and by post-hoc
methods such as imputation.33

A group comparison of segmentation performance for three
categories of WML burden is shown in Figure 9. Overlap met-
rics, such as Dice, are sensitive to object size and thus show
significantly lower scores for low disease burden with smaller
lesions. Other metrics like PPV or Hausdorff distance are less
sensitive to this effect (bottom plot of Fig 9), but have the op-
posite problem of being less representative as WML volume
increases and lesions become confluent.

A key innovation of our presented workflow is in the dual-
sensitivity approach to detect WMLs. We found that a sig-

Fig 8. Effect size for detecting atrophy in multiple sclerosis (MS)
via the automated brain parenchymal fraction (BPF) measure. Group
comparison between patients with MS and healthy controls (HC)
yields P < .001 (Wilcoxon). Effect size estimate (Cohen’s d) was d =
1.26 (standardized mean difference)31 for the entire cohort (29 MS
and 15 HC) and d = 1.04 for age-matched cohorts.

nificant improvement in automated WML segmentation from
multichannel MRI can be achieved by a dual-sensitivity ap-
proach that employs a separate intensity model for the in-
fratentorial region (Table 5, Fig 2). Significant reductions in
false positives were observed, affording increases in global sen-
sitivity without losing specificity. Because infratentorial lesions
have elevated significance in terms of disability and progression
prognosis, reliable morphometry of this region is important in
routine MRI assessment and individual studies may weigh the
sensitivity-specificity trade-off differently for this region. The
dual-sensitivity concept can easily be extended to additional
regions, approaching a model of WM appearance that changes
with anatomical region, in modulation with the MRI acquisition
protocol.

The 3TM pipeline includes a configurable and extendable
set of heuristic rules (Table 3) to correct for typical misclassifica-
tions, based on the combination of location, size, and intensity
of anatomical substructures. The main goal of this additional
step was to improve accuracy and precision of the tissue class
segmentation that serves as the spatial prior for the final EM
segmentations. A precise anatomical context is needed for those
rules, which we found more reliably obtained from a subject-
specific parcellation than from a probabilistic intersubject at-
las alone. The motivation for the emphasis on such a rule set
and a precise rather than generic anatomical prior is twofold.
First, an intuitive and accessible anatomical rule is difficult to
obtain in a purely Euclidian context. Second, intensity-based
segmentation algorithms commonly assume spatially uniform
tissue appearance (in both intensity and noise) across the brain,
which leads to misclassifications where contrast and noise char-
acteristics vary across different regions. This effect, exacerbated
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Fig 9. Comparison of performance metrics (manual vs. auto-
mated) over the spectrum of disease burden. The cohort was
grouped/stratified into WML volume categories of low (less than 10
mL), medium (10-20 mL), and high (more than 20 mL). Relative
metrics, such as Dice or Jaccard, become unstable as objects be-
come smaller and their size approaches a single voxel. Accordingly,
Dice scores for lower disease burden (with smaller lesions) are con-
sistently lower. Other metrics like positive predictive value (PPV) or
Hausdorff distance are less sensitive to this effect (bottom plot), but
have the opposite problem of being less representative as WML vol-
ume increases and lesions become confluent. WML = white matter
lesion.

at higher MRI field strengths, is also more readily modeled in
an anatomical rather than a Euclidian context.

Among the limitations of our work is that the 3TM pipeline
was validated only on high-resolution 3T MRI. However, the
basic elements are also applicable to 1.5T MRI, and prelim-
inary tests showed promising results (not shown). Validation
also lacks longitudinal data to assess the sensitivity to WML
change or progression of atrophy via direct volumetry. Similar
to other WML segmentation methods, the 3TM approach re-
lies heavily on the FLAIR image for dissociating the intensity
characteristics of WMLs from normal appearing WM and also
for defining the heuristic rule set (Table 3). In the absence of
an FLAIR image, such rules need to be reconfigured to use a
different contrast, such as a proton density or T2-based series,
and would likely require an additional rule to curb false posi-
tive WMLs from partial volume effects of the CSF. Similarly,
the use of the Freesurfer parcellation27 can be substituted by
another tissue class segmentation or anatomical parcellation.

The presented dual-sensitivity approach departs from the
assumption that individual lesions represent independent mea-
surements with a constant error, as the raw measurement sen-
sitivity now varies across the image and introduces a deliberate
regional bias. However, in its current form of discrete anatomi-

cal regions rather than unconstrained spatial priors, such bias is
more readily addressed in statistical analysis. To the extent that
the segmentation is to be reviewed and corrected by a manual
operator, the adjustment represents a mere efficiency tool to
reduce the number of false positives that need be edited by the
operator.

We conclude that the presented 3TM pipeline is a reliable
tool to perform quantitative analysis of clinically relevant MRI
correlates of brain damage in patients with MS. The high accu-
racy and precision of the measurements across a broad range of
disease burden, and the inherent flexibility and intuitive param-
eter tuning provide a fully automated workflow for the analysis
of large and heterogeneous sets of MRI data in large clinical
studies.
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