203 research outputs found

    A model to assess the technological level of small businesses

    Get PDF
    none2In this paper we present a three-dimensional framework (named Cu- be of Corporate Technological Level – CCTL) to evaluate the technological po- sition of small enterprises from different points of view. This framework has been developed from existing tools with similar goals, already proposed by oth- er authors. Compared to existing ones, this framework differs primarily for the inclusion of a collaborative perspective. It reflects the distinctive features of the latest interactive and web 2.0 tools (chat, blogs, forums, ...), that allow compa- nies to manage their relationships with the external stakeholders of the supply chain. The proposed framework has been applied to a sample of small business- es to test its validity. Some business cases with different positions in the Cube are described.This paper is the joint effort of the authors. Francesca Maria Cesaroni developed sections 1, 2 and 5 and Domenico Consoli sections 3 and 4.openF.M.Cesaroni; D.ConsoliCesaroni, FRANCESCA MARIA; D., Consol

    The XMM Cluster Survey: The interplay between the brightest cluster galaxy and the intra-cluster medium via AGN feedback

    Get PDF
    Using a sample of 123 X-ray clusters and groups drawn from the XMM-Cluster Survey first data release, we investigate the interplay between the brightest cluster galaxy (BCG), its black hole, and the intra-cluster/group medium (ICM). It appears that for groups and clusters with a BCG likely to host significant AGN feedback, gas cooling dominates in those with Tx > 2 keV while AGN feedback dominates below. This may be understood through the sub-unity exponent found in the scaling relation we derive between the BCG mass and cluster mass over the halo mass range 10^13 < M500 < 10^15Msol and the lack of correlation between radio luminosity and cluster mass, such that BCG AGN in groups can have relatively more energetic influence on the ICM. The Lx - Tx relation for systems with the most massive BCGs, or those with BCGs co-located with the peak of the ICM emission, is steeper than that for those with the least massive and most offset, which instead follows self-similarity. This is evidence that a combination of central gas cooling and powerful, well fuelled AGN causes the departure of the ICM from pure gravitational heating, with the steepened relation crossing self-similarity at Tx = 2 keV. Importantly, regardless of their black hole mass, BCGs are more likely to host radio-loud AGN if they are in a massive cluster (Tx > 2 keV) and again co-located with an effective fuel supply of dense, cooling gas. This demonstrates that the most massive black holes appear to know more about their host cluster than they do about their host galaxy. The results lead us to propose a physically motivated, empirical definition of 'cluster' and 'group', delineated at 2 keV.Comment: Accepted for publication in MNRAS - replaced to match corrected proo

    Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lignification of the fruit endocarp layer occurs in many angiosperms and plays a critical role in seed protection and dispersal. This process has been extensively studied with relationship to pod shatter or dehiscence in <it>Arabidopsis</it>. Dehiscence is controlled by a set of transcription factors that define the fruit tissue layers and whether or not they lignify. In contrast, relatively little is known about similar processes in other plants such as stone fruits which contain an extremely hard lignified endocarp or stone surrounding a single seed.</p> <p>Results</p> <p>Here we show that lignin deposition in peach initiates near the blossom end within the endocarp layer and proceeds in a distinct spatial-temporal pattern. Microarray studies using a developmental series from young fruits identified a sharp and transient induction of phenylpropanoid, lignin and flavonoid pathway genes concurrent with lignification and subsequent stone hardening. Quantitative polymerase chain reaction studies revealed that specific phenylpropanoid (phenylalanine ammonia-lyase and cinnamate 4-hydroxylase) and lignin (caffeoyl-CoA O-methyltransferase, peroxidase and laccase) pathway genes were induced in the endocarp layer over a 10 day time period, while two lignin genes (<it>p-</it>coumarate 3-hydroxylase and cinnamoyl CoA reductase) were co-regulated with flavonoid pathway genes (chalcone synthase, dihydroflavanol 4-reductase, leucoanthocyanidin dioxygen-ase and flavanone-3-hydrosylase) which were mesocarp and exocarp specific. Analysis of other fruit development expression studies revealed that flavonoid pathway induction is conserved in the related Rosaceae species apple while lignin pathway induction is not. The transcription factor expression of peach genes homologous to known endocarp determinant genes in <it>Arabidopsis </it>including <it>SHATTERPROOF</it>, <it>SEEDSTCK </it>and <it>NAC SECONDARY WALL THICENING PROMOTING FACTOR 1 </it>were found to be specifically expressed in the endocarp while the negative regulator <it>FRUITFU</it>L predominated in exocarp and mesocarp.</p> <p>Conclusions</p> <p>Collectively, the data suggests, first, that the process of endocarp determination and differentiation in peach and <it>Arabidopsis </it>share common regulators and, secondly, reveals a previously unknown coordination of competing lignin and flavonoid biosynthetic pathways during early fruit development.</p

    ZFOURGE/CANDELS: On the Evolution of \u3cem\u3eM\u3c/em\u3e* Galaxy Progenitors from \u3cem\u3ez\u3c/em\u3e=3 to 0.5*

    Get PDF
    Galaxies with stellar masses near M* contain the majority of stellar mass in the universe, and are therefore of special interest in the study of galaxy evolution. The Milky Way (MW) and Andromeda (M31) have present-day stellar masses near M*, at 5 × 1010 M ☉ (defined here to be MW-mass) and 1011 M ☉ (defined to be M31-mass). We study the typical progenitors of these galaxies using the FOURSTAR Galaxy Evolution Survey (ZFOURGE). ZFOURGE is a deep medium-band near-IR imaging survey, which is sensitive to the progenitors of these galaxies out to z ~ 3. We use abundance-matching techniques to identify the main progenitors of these galaxies at higher redshifts. We measure the evolution in the stellar mass, rest-frame colors, morphologies, far-IR luminosities, and star formation rates, combining our deep multiwavelength imaging with near-IR Hubble Space Telescope imaging from Cosmic Near-IR Deep Extragalactic Legacy Survey (CANDELS), and Spitzer and Herschel far-IR imaging from Great Observatories Origins Deep Survey-Herschel and CANDELS-Herschel. The typical MW-mass and M31-mass progenitors passed through the same evolution stages, evolving from blue, star-forming disk galaxies at the earliest stages to redder dust-obscured IR-luminous galaxies in intermediate stages and to red, more quiescent galaxies at their latest stages. The progenitors of the MW-mass galaxies reached each evolutionary stage at later times (lower redshifts) and with stellar masses that are a factor of two to three lower than the progenitors of the M31-mass galaxies. The process driving this evolution, including the suppression of star formation in present-day M* galaxies, requires an evolving stellar-mass/halo-mass ratio and/or evolving halo-mass threshold for quiescent galaxies. The effective size and SFRs imply that the baryonic cold-gas fractions drop as galaxies evolve from high redshift to z ~ 0 and are strongly anticorrelated with an increase in the Sérsic index. Therefore, the growth of galaxy bulges in M* galaxies corresponds to a rapid decline in the galaxy gas fractions and/or a decrease in the star formation efficiency

    Early assembly of the most massive galaxies

    Get PDF
    The current consensus is that galaxies begin as small density fluctuations in the early Universe and grow by in situ star formation and hierarchical merging. Stars begin to form relatively quickly in sub-galactic sized building blocks called haloes which are subsequently assembled into galaxies. However, exactly when this assembly takes place is a matter of some debate. Here we report that the stellar masses of brightest cluster galaxies, which are the most luminous objects emitting stellar light, some 9 billion years ago are not significantly different from their stellar masses today. Brightest cluster galaxies are almost fully assembled 4-5 Gyrs after the Big Bang, having grown to more than 90% of their final stellar mass by this time. Our data conflict with the most recent galaxy formation models based on the largest simulations of dark matter halo development. These models predict protracted formation of brightest cluster galaxies over a Hubble time, with only 22% of the stellar mass assembled at the epoch probed by our sample. Our findings suggest a new picture in which brightest cluster galaxies experience an early period of rapid growth rather than prolonged hierarchical assembly.Comment: Published in Nature 2nd April 2009. This astro ph version includes main text and supplementary material combine

    ICF components of corresponding outcome measures in flexor tendon rehabilitation – a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The International Classification of Functioning, Disability and Health (ICF) delivers a holistic approach to health conditions. The objective of the present study is to provide an overview of flexor tendon rehabilitation outcome measures with respect to ICF components. Furthermore, it aims to investigate to which extent current assessments measure aspects of health according to these components primarily focussing on <it>activity </it>and <it>participation</it>.</p> <p>Methods</p> <p>A systematic literature review was conducted to identify all studies meeting the inclusion criteria. Studies were only included if they assessed more than <it>body function and body structure </it>and referred to the ICF components <it>activity </it>and <it>participation</it>. The outcome measures were analysed and their linkage to the ICF components were investigated to examine to which degree aspects of health outcome as defined by the ICF were considered.</p> <p>Results</p> <p>As anticipated, the application of outcome measures after flexor tendon repair is non conform. In many studies the emphasis still lies on physical impairment neglecting activity limitations and participation restrictions.</p> <p>Aspects of health after flexor tendon repair could be assessed more adequately and cover patients' needs more sufficiently by choosing outcome measures which refer to all aspects of functioning.</p> <p>Conclusion</p> <p>The ICF can help to identify aspects of health which are not being considered. The ICF can help promote further development of adequate outcome measures including activity limitation and participation restrictions by targeting patient centred goals and respecting patients' needs.</p

    Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts

    Get PDF
    We present constraints on cosmological parameters using number counts as a function of redshift for a sub-sample of 189 galaxy clusters from the Planck SZ (PSZ) catalogue. The PSZ is selected through the signature of the Sunyaev--Zeldovich (SZ) effect, and the sub-sample used here has a signal-to-noise threshold of seven, with each object confirmed as a cluster and all but one with a redshift estimate. We discuss the completeness of the sample and our construction of a likelihood analysis. Using a relation between mass MM and SZ signal YY calibrated to X-ray measurements, we derive constraints on the power spectrum amplitude σ8\sigma_8 and matter density parameter Ωm\Omega_{\mathrm{m}} in a flat Λ\LambdaCDM model. We test the robustness of our estimates and find that possible biases in the YY--MM relation and the halo mass function are larger than the statistical uncertainties from the cluster sample. Assuming the X-ray determined mass to be biased low relative to the true mass by between zero and 30%, motivated by comparison of the observed mass scaling relations to those from a set of numerical simulations, we find that σ8=0.75±0.03\sigma_8=0.75\pm 0.03, Ωm=0.29±0.02\Omega_{\mathrm{m}}=0.29\pm 0.02, and σ8(Ωm/0.27)0.3=0.764±0.025\sigma_8(\Omega_{\mathrm{m}}/0.27)^{0.3} = 0.764 \pm 0.025. The value of σ8\sigma_8 is degenerate with the mass bias; if the latter is fixed to a value of 20% we find σ8(Ωm/0.27)0.3=0.78±0.01\sigma_8(\Omega_{\mathrm{m}}/0.27)^{0.3}=0.78\pm 0.01 and a tighter one-dimensional range σ8=0.77±0.02\sigma_8=0.77\pm 0.02. We find that the larger values of σ8\sigma_8 and Ωm\Omega_{\mathrm{m}} preferred by Planck's measurements of the primary CMB anisotropies can be accommodated by a mass bias of about 40%. Alternatively, consistency with the primary CMB constraints can be achieved by inclusion of processes that suppress power on small scales relative to the Λ\LambdaCDM model, such as a component of massive neutrinos (abridged).Comment: 20 pages, accepted for publication by A&

    Planck 2013 results. XXIX. Planck catalogue of Sunyaev-Zeldovich sources

    Get PDF
    We describe the all-sky Planck catalogue of clusters and cluster candidates derived from Sunyaev-Zeldovich (SZ) effect detections using the first 15.5 months of Planck satellite observations. The catalogue contains 1227 entries, making it over six times the size of the Planck Early SZ (ESZ) sample and the largest SZ-selected catalogue to date. It contains 861 confirmed clusters, of which 178 have been confirmed as clusters, mostly through follow-up observations, and a further 683 are previously-known clusters. The remaining 366 have the status of cluster candidates, and we divide them into three classes according to the quality of evidence that they are likely to be true clusters. The Planck SZ catalogue is the deepest all-sky cluster catalogue, with redshifts up to about one, and spans the broadest cluster mass range from (0.1 to 1.6) × 1015 M⊙. Confirmation of cluster candidates through comparison with existing surveys or cluster catalogues is extensively described, as is the statistical characterization of the catalogue in terms of completeness and statistical reliability. The outputs of the validation process are provided as additional information. This gives, in particular, an ensemble of 813 cluster redshifts, and for all these Planck clusters we also include a mass estimated from a newly-proposed SZ-mass proxy. A refined measure of the SZ Compton parameter for the clusters with X-ray counter-parts is provided, as is an X-ray flux for all the Planck clusters not previously detected in X-ray surveys.The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU).Peer Reviewe

    Fruit-Surface Flavonoid Accumulation in Tomato Is Controlled by a SlMYB12-Regulated Transcriptional Network

    Get PDF
    The cuticle covering plants' aerial surfaces is a unique structure that plays a key role in organ development and protection against diverse stress conditions. A detailed analysis of the tomato colorless-peel y mutant was carried out in the framework of studying the outer surface of reproductive organs. The y mutant peel lacks the yellow flavonoid pigment naringenin chalcone, which has been suggested to influence the characteristics and function of the cuticular layer. Large-scale metabolic and transcript profiling revealed broad effects on both primary and secondary metabolism, related mostly to the biosynthesis of phenylpropanoids, particularly flavonoids. These were not restricted to the fruit or to a specific stage of its development and indicated that the y mutant phenotype is due to a mutation in a regulatory gene. Indeed, expression analyses specified three R2R3-MYB–type transcription factors that were significantly down-regulated in the y mutant fruit peel. One of these, SlMYB12, was mapped to the genomic region on tomato chromosome 1 previously shown to harbor the y mutation. Identification of an additional mutant allele that co-segregates with the colorless-peel trait, specific down-regulation of SlMYB12 and rescue of the y phenotype by overexpression of SlMYB12 on the mutant background, confirmed that a lesion in this regulator underlies the y phenotype. Hence, this work provides novel insight to the study of fleshy fruit cuticular structure and paves the way for the elucidation of the regulatory network that controls flavonoid accumulation in tomato fruit cuticle
    corecore