412 research outputs found

    Heating the hot atmospheres of galaxy groups and clusters with cavities: the relationship between jet power and low-frequency radio emission

    Get PDF
    We present scaling relations between jet power and radio power measured using the Giant Metrewave Radio Telescope (GMRT), Chandra and XMM-Newton, for a sample of 9 galaxy groups combined with the Birzan et al. sample of clusters. Cavity power is used as a proxy for mechanical jet power. Radio power is measured at 235 MHz and 1.4 GHz, and the integrated 10 MHz-10 GHz radio luminosity is estimated from the GMRT 610-235 MHz spectral index. The use of consistently analysed, high resolution low-frequency radio data from a single observatory makes the radio powers for the groups more reliable than those used by previous studies, and the combined sample covers 6-7 decades in radio power and 5 decades in cavity power. We find a relation of the form Pjet proportional to Lradio^~0.7 for integrated radio luminosity, with a total scatter of sigma_Lrad=0.63 and an intrinsic scatter of sigma_i,Lrad=0.59. A similar relation is found for 235 MHz power, but a slightly flatter relation with greater scatter is found for 1.4 GHz power, suggesting that low-frequency or broad band radio measurements are superior jet power indicators. We find our low-frequency relations to be in good agreement with previous observational results. Comparison with jet models shows reasonable agreement, which may be improved if radio sources have a significant low-energy electron population. We consider possible factors which could bias our results or render them more uncertain, and find that correcting for such factors in those groups we are able to study in detail leads to a flattening of the Pjet:Lradio relation.Comment: Accepted for publication in ApJ, 7 pages, 3 figure

    A relationship between AGN jet power and radio power

    Full text link
    Using Chandra X-ray and VLA radio data, we investigate the scaling relationship between jet power, P_jet, and synchrotron luminosity, P_rad. We expand the sample presented in Birzan et al. (2008) to lower radio power by incorporating measurements for 21 gEs to determine if the Birzan et al. (2008) P_jet-P_rad scaling relations are continuous in form and scatter from giant elliptical galaxies (gEs) up to brightest cluster galaxies (BCGs). We find a mean scaling relation of P_jet approximately 5.8x10^43 (P_rad/10^40)^(0.70) erg/s which is continuous over ~6-8 decades in P_jet and P_rad with a scatter of approximately 0.7 dex. Our mean scaling relationship is consistent with the model presented in Willott et al. (1999) if the typical fraction of lobe energy in non-radiating particles to that in relativistic electrons is > 100. We identify several gEs whose radio luminosities are unusually large for their jet powers and have radio sources which extend well beyond the densest parts of their X-ray halos. We suggest that these radio sources are unusually luminous because they were unable to entrain appreciable amounts of gas.Comment: Accepted for publication in the Astrophysical Journal; 8 pages, 3 color figures, 1 tabl

    MHD Simulations of AGN Jets in a Dynamic Galaxy Cluster Medium

    Full text link
    We present a pair of 3-d magnetohydrodynamical simulations of intermittent jets from a central active galactic nucleus (AGN) in a galaxy cluster extracted from a high resolution cosmological simulation. The selected cluster was chosen as an apparently relatively relaxed system, not having undergone a major merger in almost 7 Gyr. Despite this characterization and history, the intra-cluster medium (ICM) contains quite active "weather". We explore the effects of this ICM weather on the morphological evolution of the AGN jets and lobes. The orientation of the jets is different in the two simulations so that they probe different aspects of the ICM structure and dynamics. We find that even for this cluster that can be characterized as relaxed by an observational standard, the large-scale, bulk ICM motions can significantly distort the jets and lobes. Synthetic X-ray observations of the simulations show that the jets produce complex cavity systems, while synthetic radio observations reveal bending of the jets and lobes similar to wide-angle tail (WAT) radio sources. The jets are cycled on and off with a 26 Myr period using a 50% duty cycle. This leads to morphological features similar to those in "double-double" radio galaxies. While the jet and ICM magnetic fields are generally too weak in the simulations to play a major role in the dynamics, Maxwell stresses can still become locally significant.Comment: 20 pages, 14 figures, accepted for publication in the Astrophysical Journa

    A Chandra study of the large-scale shock and cool filaments in Hydra A: Evidence for substantial gas dredge-up by the central outburst

    Full text link
    We present the results of a Chandra study of the Hydra A galaxy cluster, where a powerful AGN outburst created a large-scale cocoon shock. We investigated possible azimuthal variations in shock strength and shape, finding indications for a weak shock with a Mach number in the range ~1.2-1.3. We measured the temperature change across the shock front. However, the detection of a temperature rise in the regions immediately inside of the front is complicated by the underlying temperature profile of the cluster atmosphere. We measured the global temperature profile of the cluster up to 700 kpc, which represents the farthest measurement obtained with Chandra for this cluster. A "plateau" in the temperature profile in the range ~70-150 kpc indicates the presence of cool gas, which is likely the result of uplift of material by the AGN outburst. After masking the cool filaments visible in the hardness ratio map, the plateau disappears and the temperature profile recovers a typical shape with a peak around 190 kpc, just inside the shock front. However, it is unlikely that such a temperature feature is produced by the shock as it is consistent with the general shape of the temperature profiles observed for relaxed galaxy clusters. We studied the spectral properties of the cool filaments finding evidence that ~10^11 M_sun of low-entropy material has been dredged up by the rising lobes from the central 30 kpc to the observed current position of 75-150 kpc. The energy required to lift the cool gas is >~2.2 x 10^60 erg, which is comparable to the work required to inflate the cavities and is ~25% of the total energy of the large-scale shock. Our results show that the AGN feedback in Hydra A is acting not only by directly heating the gas, but also by removing a substantial amount of potential fuel for the SMBH.Comment: 11 pages, 9 figures, accepted for publication in ApJ (version with full resolution figures available at http://www.bo.astro.it/~myriam/files/papers/gitti-hydra.pdf

    Radio galaxy feedback in X-ray selected groups from COSMOS: the effect on the ICM

    Get PDF
    We quantify the importance of the mechanical energy released by radio-galaxies inside galaxy groups. We use scaling relations to estimate the mechanical energy released by 16 radio-AGN located inside X-ray detected galaxy groups in the COSMOS field. By comparing this energy output to the host groups' gravitational binding energy, we find that radio galaxies produce sufficient energy to unbind a significant fraction of the intra-group medium. This unbinding effect is negligible in massive galaxy clusters with deeper potential wells. Our results correctly reproduce the breaking of self-similarity observed in the scaling relation between entropy and temperature for galaxy groups.Comment: Accepted for publication in the Astrophysical Journal. 12 Page

    The Growth of Black Holes and Bulges at the Cores of Cooling Flows

    Get PDF
    Central cluster galaxies (cDs) in cooling flows are growing rapidly through gas accretion and star formation. At the same time, AGN outbursts fueled by accretion onto supermassive black holes are generating X-ray cavity systems and driving outflows that exceed those in powerful quasars. We show that the resulting bulge and black hole growth follows a trend that is roughly consistent with the slope of the local (Magorrian) relation between bulge and black hole mass for nearby quiescent ellipticals. However, a large scatter suggests that cD bulges and black holes do not always grow in lock-step. New measurements made with XMM, Chandra, and FUSE of the condensation rates in cooling flows are now approaching or are comparable to the star formation rates, alleviating the need for an invisible sink of cold matter. We show that the remaining radiation losses can be offset by AGN outbursts in more than half of the systems in our sample, indicating that the level of cooling and star formation is regulated by AGN feedback.Comment: 3 pages, 4 figures, to appear in the proceedings of "Heating vs. Cooling in Galaxies and Clusters of Galaxies," edited by H. Boehringer, P. Schuecker, G. W. Pratt, and A. Finogueno

    Cavities and shocks in the galaxy group HCG 62 as revealed by Chandra, XMM and GMRT data

    Full text link
    We report on the results of an analysis of Chandra, XMM-Newton and new GMRT data of the X-ray bright compact group of galaxies HCG 62, which is one of the few groups known to possess clear, small X-ray cavities in the inner regions. This is part of an ongoing X-ray/low-frequency radio study of 18 groups, initially chosen for the availability of good-quality X-ray data and evidence for AGN/hot gas interaction. At higher frequency (1.4 GHz), the HCG 62 cavity system shows minimal if any radio emission, but the new GMRT observations at 235 MHz and 610 MHz clearly detect extended low-frequency emission from radio lobes corresponding to the cavities. By means of the synergy of X-ray and low-frequency radio observations, we compare and discuss the morphology, luminosity and pressure of the gas and of the radio source. We find that the radio source is radiatively inefficient, with a ratio of radio luminosity to mechanical cavity power of 104\sim 10^{-4}, and that the radio pressure of the lobes is about one order of magnitude lower than the X-ray pressure of the surrounding thermal gas. Thanks to the high spatial resolution of the Chandra surface brightness and temperature profiles, we also identify a shock front located at 36 kpc to the south-west of the group center, close to the southern radio lobe, with a Mach number 1.5\sim 1.5 and a total power which is about one order of magnitude higher than the cavity power. Such a shock may have heated the gas in the southern region, as indicated by the temperature map. The shock may also explain the arc-like region of enriched gas seen in the iron abundance map, as this may be produced by a non-Maxwellian electron distribution near its front.Comment: 14 pages, 8 figures, accepted for publication in ApJ. Revised version including minor comments and expanded discussion (version with full resolution figures available at http://hea-www.harvard.edu/~mgitti/hcg62-gitti.pdf

    Evidence for Rapidly Rotating Black Holes in FR I Radio Galaxies

    Full text link
    We investigate the correlation between 151 MHz radio luminosity, L_151MHz, and jet power, P_jet, for a sample of low-power radio galaxies, of which the jet power is estimated from X-ray cavities. The jet power for a sample of FR I radio galaxies is estimated with the derived empirical correlation. We find that P_jet/L_Edd is positively correlated with Lx(2-10 keV)/L_Edd for FR Is, where L_Edd is the Eddington luminosity and Lx(2-10 keV) is 2-10 keV X-ray luminosity. We calculate the jet power of a hybrid model, as a variant of Blandford-Znajek model proposed by Meier, based on the global solution of the advection-dominated accretion flow (ADAF) surrounding a Kerr black hole (BH). Our model calculations suggest that the maximal jet power is a function of mass accretion rate and the black hole spin parameter j. The hard X-ray emission is believed to be mainly from the ADAFs in FR Is, and the mass accretion rate is therefore constrained with the X-ray emission in our ADAF model calculations. We find that the dimensionless angular momentum of BH j>~0.9 is required in order to reproduce the observed relation of P_jet/L_Edd-Lx(2-10 keV)/L_Edd for FR Is. Our conclusion will be strengthened if part of the X-ray emission is contributed by the jets. Our results suggest that BHs in FR I radio galaxies are rapidly spinning, which are almost not affected by the uncertainty of the black hole mass estimates.Comment: Accepted by Ap

    Three-Dimensional Simulations of Bi-Directed Magnetohydrodynamic Jets Interacting with Cluster Environments

    Full text link
    We report on a series of three-dimensional magnetohydrodynamic simulations of active galactic nucleus (AGN) jet propagation in realistic models of magnetized galaxy clusters. We are primarily interested in the details of energy transfer between jets and the intracluster medium (ICM) to help clarify what role such flows could have in the reheating of cluster cores. Our simulated jets feature a range of intermittency behaviors, including intermittent jets that periodically switch on and off and one model jet that shuts down completely, naturally creating a relic plume. The ICM into which these jets propagate incorporates tangled magnetic field geometries and density substructure designed to mimic some likely features of real galaxy clusters. We find that our jets are characteristically at least 60% efficient at transferring thermal energy to the ICM. Irreversible heat energy is not uniformly distributed, however, instead residing preferentially in regions very near the jet/cocoon boundaries. While intermittency affects the details of how, when, and where this energy is deposited, all of our models generically fail to heat the cluster cores uniformly. Both the detailed density structure and nominally weak magnetic fields in the ICM play interesting roles in perturbing the flows, particularly when the jets are non-steady. Still, this perturbation is never sufficient to isotropize the jet energy deposition, suggesting that some other ingredient is required for AGN jets to successfully reheat cluster cores.Comment: 19 pages, 18 figures, Accepted for publication in the Astrophysical Journa
    corecore