9 research outputs found

    Block Polyelectrolyte Additives That Modulate the Viscoelasticity and Enhance the Printability of Gelatin Inks at Physiological Temperatures

    Get PDF
    We demonstrate the utility of block polyelectrolyte (bPE) additives to enhance viscosity and resolve challenges with the three-dimensional (3D) printability of extrusion-based biopolymer inks. The addition of oppositely charged bPEs to solutions of photocurable gelatin methacryloyl (GelMA) results in complexation-driven self-assembly of the bPEs, leading to GelMA/bPE inks that are printable at physiological temperatures, representing stark improvements over GelMA inks that suffer from low viscosity at 37 °C, leading to low printability and poor structural stability. The hierarchical microstructure of the self-assemblies (either jammed micelles or 3D networks) formed by the oppositely charged bPEs, confirmed by small-angle X-ray scattering, is attributed to the enhancements in the shear strength and printability of the GelMA/ bPE inks. Varying bPE concentration in the inks is shown to enable tunability of the rheological properties to meet the criteria of pre- and postextrusion flow characteristics for 3D printing, including prominent yielding behavior, strong shear thinning, and rapid recovery upon flow cessation. Moreover, the bPE self-assemblies also contribute to the robustness of the photo-cross- linked hydrogels; photo-cross-linked GelMA/bPE hydrogels are shown to exhibit higher shear strength than photo-cross-linked GelMA hydrogels. Last, the assessment of the printability of GelMA/bPE inks indicates excellent printing performance, including minimal swelling postextrusion, satisfactory retention of the filament shape upon deposition, and satisfactory shape fidelity of the various printed constructs. We envision this study to serve as a practical guide for the printing of bespoke extrusion inks where bPEs are used as scaffolds and viscosity enhancers that can be emulated in a range of photocurable precursors

    Besprechungen

    No full text

    Block Polyelectrolyte Additives Modulate the Viscoelasticity and Enable 3D Printing of Gelatin Inks at Physiological Temperatures

    No full text
    We demonstrate the utility of block polyelectrolyte (bPE) additives to enhance viscosity and resolve longstanding challenges with the three-dimensional printability of extrusion-based biopolymer inks. The addition of oppositely charged bPEs into solutions of photocurable gelatin methacryloyl (GelMA) results in complexation-driven self- assembly of the bPEs, leading to GelMA/bPE inks that are printable at physiological temperatures, representing stark improvements over GelMA inks that suffer from low viscosity at 37 °C leading to low printability and poor structural stability. The hierarchical microstructure of the self-assemblies (either jammed micelles or three-dimensional networks) formed by the oppositely charged bPEs, as confirmed by small angle X-ray scattering, is attributed to the enhancements in the shear strength and printability of the GelMA/bPE inks. Varying bPE concentration in the inks is shown to enable tunability of the rheological properties to meet the criteria of pre- and post-extrusion flow characteristics for 3D bioprinting, including prominent yield stress behavior, strong shear thinning, and rapid recovery upon flow cessation. Moreover, the bPE self-assemblies also contribute to the robustness of the photocrosslinked hydrogels – photocrosslinked GelMA/bPE hydrogels are shown to exhibit higher shear strength than photocrosslinked GelMA hydrogels. We envision this study to serve as a practical guide for the bioprinting of bespoke extrusion inks where bPE are used as scaffolds and viscosity enhancers that can be emulated in a range of biopolymers and photocurable precursors

    Polyelectrolyte Complex Hydrogel Scaffoldings Enable Extrusion-based 3D Bioprinting of Low-Viscosity Bioinks

    No full text
    We generate self-assembled biocompatible scaffolds with excellent structural integrity based on complex-forming block polyelectrolytes that enable extrusion-based 3D bioprinting of large constructs from low-viscosity bioinks. Despite remarkable progress of biofabrication techniques in tissue engineering, the development of extrudable bioinks that perform optimally at physiological temperatures remains a major challenge. Most biopolymer and photocurable precursor solutions exhibit low viscosities at 37 °C, resulting in undesirable flows and loss of form prior to chemical crosslinking. Temperature-sensitive bioinks, such as gelatin methacryloyl (GelMA), can be deposited near their gelling point, but suffer from suboptimal temperature-induced pre-gelation, poor cell viability emerging from long holding times in the cooled cartridges, inefficient temperature transfer from the print bed, and discontinuous layer-by-layer fabrication. Here, we demonstrate that block polyelectrolyte additives serve as effective viscosity enhancers when added to non-extrudable precursor solutions. Rapid, electrostatic self-assembly of block polyelectrolytes into either jammed micelles or interconnected networks provides hydrogel scaffoldings that form nearly instantly, lend initial structural robustness upon deposition, and enhance shear and tensile strength of the cured bioinks. Moreover, our approach enables continuous extrusion without the need of chemical crosslinking between individual layers, paving the way for fast biomanufacturing of human-scale tissue constructs with improved inter-layer bonding

    Besprechungen

    No full text

    Status and future scope of plant-based green hydrogels in biomedical engineering

    No full text
    corecore