94 research outputs found

    Use of novel DNA methylation signatures to distinguish between human airway structural cell types

    Get PDF
    INTRODUCTION: Chronic inflammatory and fibrotic lung diseases like asthma, COPD and pulmonary fibrosis are characterised by modified phenotype of the airway structural cells. Airway walls are comprised of a robust epithelial layer that lines the lumen followed by the basement membrane, submucosa predominantly composed of fibroblasts and finally enveloped by a bulk of smooth muscle cells that determine the relaxation and constriction of the airways. The phenotype of airway structural cells is determined by epigenetic alterations such as DNA methylation, which alters the activation status of a range of important inflammatory and remodelling genes. Here we determined if airway structural cells (Epithelial cells, fibroblasts and smooth muscle cells) have different DNA methylome signatures that can be used to distinguish between them. This will offer a reference standard for identifying cell type specific DNA methylation changes induced by various inflammatory stimuli. EXPERIMENTAL METHODS: Illumina Human Methylation 450K Beadchip (HM450K) was used to perform genome-wide methylome screening on 17 bronchial fibroblast (BrF), 23 lung parenchymal fibroblast (LgF), 17 airway epithelial cell (Ep) and 6 airway smooth muscle cell (ASM) samples isolated from healthy individuals. The data was normalised using funtoonorm, a specialised algorithm in R developed for multiple tissue types. R packages minfi, limma and DMRcate was used for CpG site exclusion and identification of significant differentially methylated regions (DMR) specific to each of the four cell types. RESULTS AND DISCUSSION: Epithelial cells distinctly separated from other lung cells (791 DMR). LgF, BrF and ASM had 13, 10 and 1 signature DMR respectively. Despite close anatomical proximity, ASM and BrF displayed 2 DMR when compared to each other. Interestingly, fibroblasts obtained from airway showed 6 DMR in comparison to those obtained from lung parenchyma, suggesting that the same cell type obtained from different parts of the lung can have significantly different methylation patterns that might lead to phenotypic differences. CONCLUSION: We have identified cell and tissue specific methylation signatures which can be used to differentiate between different types of airway structural cells. The airway epithelial cells showed the greatest separation from other airway structural cells. The Bronchial fibroblasts varied minimally from airway smooth muscle cells despite its significant separation from airway epithelial cells and parenchymal fibroblasts

    Investigating genome wide DNA methylation in bronchial and lung fibroblasts from healthy individuals and individuals with COPD

    Get PDF
    Rationale: Lung fibroblasts are implicated in respiratory disease pathology including chronic obstructive pulmonary disease (COPD). Phenotypic differences between fibroblasts isolated from the bronchi versus the lung parenchyma have been described but no studies have compared the cell types on a genome wide scale. DNA methylation is a reversible modification of the DNA structure with the ability to affect cell function via the alteration of gene expression. Here we compared genome wide DNA methylation profiles from bronchial and lung fibroblasts and assessed modification to these profiles in cells isolated from individuals with COPD. Methods: DNA was isolated from lung (LgF) and bronchial fibroblasts (BrF) at passage 4 and bisulphite treated. Site specific, quantitative genome wide methylation was determined using the Illumina 450K Infinium Methylation BeadChip array. Linear modelling and DMRcate functions identified differentially methylated sites and regions respectively between BrF and LgF and from cells isolated from healthy individuals versus those with COPD. Results: 3980 CpG (methylation) sites significantly differed, following Bonferroni correction, between BrF and LgF isolated from healthy individuals. These sites had a broad distribution of effect size, with 240 CpG sites displaying a difference in methylation of >50%. 78 of these sites were validated in a second cohort of matched BrF and LgF isolated from the same individuals. There was genomic proximity to these sites and DMRcate was used to refine the individual CpG sites to 5 regions of interest associated with 5 genes; HLX, TWIST1, CREB5, SKAP2 and PRDM16. Differences in methylation were less pronounced when comparing cells isolated from healthy individuals to those with COPD. In BrF 47 DMRcate regions were identified with a maximum difference in methylation of at least 20%. In LgF 3 DMRcate regions were identified with a maximum difference in methylation of at least 20%. Conclusions: DNA methylation profiles are significantly different between BrF and LgF but only small modifications are associated with COPD. Future work will focus on validating a methylation based marker of lung versus bronchial fibroblasts to differentiate cell types by validating our differential DNA methylation observations with gene/protein expression

    Clastic Polygonal Networks Around Lyot Crater, Mars: Possible Formation Mechanisms From Morphometric Analysis

    Get PDF
    Polygonal networks of patterned ground are a common feature in cold-climate environments. They can form through the thermal contraction of ice-cemented sediment (i.e. formed from fractures), or the freezing and thawing of ground ice (i.e. formed by patterns of clasts, or ground deformation). The characteristics of these landforms provide information about environmental conditions. Analogous polygonal forms have been observed on Mars leading to inferences about environmental conditions. We have identified clastic polygonal features located around Lyot crater, Mars (50°N, 30°E). These polygons are unusually large (> 100 m diameter) compared to terrestrial clastic polygons, and contain very large clasts, some of which are up to 15 metres in diameter. The polygons are distributed in a wide arc around the eastern side of Lyot crater, at a consistent distance from the crater rim. Using high-resolution imaging data, we digitised these features to extract morphological information. These data are compared to existing terrestrial and Martian polygon data to look for similarities and differences and to inform hypotheses concerning possible formation mechanisms. Our results show the clastic polygons do not have any morphometric features that indicate they are similar to terrestrial sorted, clastic polygons formed by freeze-thaw processes. They are too large, do not show the expected variation in form with slope, and have clasts that do not scale in size with polygon diameter. However, the clastic networks are similar in network morphology to thermal contraction cracks, and there is a potential direct Martian analogue in a sub-type of thermal contraction polygons located in Utopia Planitia. Based upon our observations, we reject the hypothesis that polygons located around Lyot formed as freeze-thaw polygons and instead an alternative mechanism is put forward: they result from the infilling of earlier thermal contraction cracks by wind-blown material, which then became compressed and/or cemented resulting in a resistant fill. Erosion then leads to preservation of these polygons in positive relief, while later weathering results in the fracturing of the fill material to form angular clasts. These results suggest that there was an extensive area of ice-rich terrain, the extent of which is linked to ejecta from Lyot crater

    Maternal antenatal depression and child mental health: moderation by genomic risk for attention-deficit/hyperactivity disorder

    Get PDF
    Maternal antenatal depression strongly influences child mental health but with considerable inter-individual variation that is, in part, linked to genotype. The challenge is to effectively capture the genotypic influence. We outline a novel approach to describe genomic susceptibility to maternal antenatal depression focusing on child emotional/behavioral difficulties. Two cohorts provided measures of maternal depression, child genetic variation, and child mental health symptoms. We constructed a conventional polygenic risk score (PRS) for attention-deficit/hyperactivity disorder (ADHD) (PRSADHD) that significantly moderated the association between maternal antenatal depression and internalizing problems at 60 months (p = 2.94 x 10(-4), R-2 = .18). We then constructed an interaction PRS (xPRS) based on a subset of those single nucleotide polymorphisms from the PRSADHD that most accounted for the moderation of the association between maternal antenatal depression and child outcome. The interaction between maternal antenatal depression and this xPRS accounted for a larger proportion of the variance in child emotional/behavioral problems than models based on any PRSADHD (p = 5.50 x 10(-9), R-2 = .27), with similar findings in the replication cohort. The xPRS was significantly enriched for genes involved in neuronal development and synaptic function. Our study illustrates a novel approach to the study of genotypic moderation on the impact of maternal antenatal depression on child mental health and highlights the utility of the xPRS approach. These findings advance our understanding of individual differences in the developmental origins of mental health.Stress and Psychopatholog

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.1∘3.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (38−6+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (69−13+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic

    The Fluorescence Detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics Research Section

    Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory

    Get PDF
    The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs "radio-hybrid" measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluoresence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request.Comment: accepted for publication in NIM A, 13 pages, minor corrections to author list and references in v

    Search for First Harmonic Modulation in the Right Ascension Distribution of Cosmic Rays Detected at the Pierre Auger Observatory

    Get PDF
    We present the results of searches for dipolar-type anisotropies in different energy ranges above 2.5×10172.5\times 10^{17} eV with the surface detector array of the Pierre Auger Observatory, reporting on both the phase and the amplitude measurements of the first harmonic modulation in the right-ascension distribution. Upper limits on the amplitudes are obtained, which provide the most stringent bounds at present, being below 2% at 99% C.L.C.L. for EeV energies. We also compare our results to those of previous experiments as well as with some theoretical expectations.Comment: 28 pages, 11 figure
    • 

    corecore