126 research outputs found
No Evidence for XMRV in German CFS and MS Patients with Fatigue Despite the Ability of the Virus to Infect Human Blood Cells In Vitro
BACKGROUND: Xenotropic murine leukemia virus-related virus (XMRV), a novel human retrovirus originally identified in prostate cancer tissues, has recently been associated with chronic fatigue syndrome (CFS), a disabling disease of unknown etiology affecting millions of people worldwide. However, several subsequent studies failed to detect the virus in patients suffering from these illnesses or in healthy subjects. Here we report the results of efforts to detect antibody responses and viral sequences in samples from a cohort of German CFS and relapsing remitting multiple sclerosis (MS) patients with fatigue symptoms. METHODOLOGY: Blood samples were taken from a cohort of 39 patients fulfilling the Fukuda/CDC criteria (CFS), from 112 patients with an established MS diagnosis and from 40 healthy donors. Fatigue severity in MS patients was assessed using the Fatigue Severity Scale (FSS). Validated Gag- and Env-ELISA assays were used to screen sera for XMRV antibodies. PHA-activated PBMC were cultured for seven days in the presence of IL-2 and DNA isolated from these cultures as well as from co-cultures of PBMC and highly permissive LNCaP cells was analyzed by nested PCR for the presence of the XMRV gag gene. In addition, PBMC cultures were exposed to 22Rv1-derived XMRV to assess infectivity and virus production. CONCLUSION: None of the screened sera from CFS and MS patients or healthy blood donors tested positive for XMRV specific antibodies and all PBMC (and PBMC plus LNCaP) cultures remained negative for XMRV sequences by nested PCR. These results argue against an association between XMRV infection and CFS and MS in Germany. However, we could confirm that PBMC cultures from healthy donors and from CFS patients can be experimentally infected by XMRV, resulting in the release of low levels of transmittable virus
Prevalence of Symptoms ≤12 Months After Acute Illness, by COVID-19 Testing Status Among Adults - United States, December 2020-March 2023
To further the understanding of post-COVID conditions, and provide a more nuanced description of symptom progression, resolution, emergence, and reemergence after SARS-CoV-2 infection or COVID-like illness, analysts examined data from the Innovative Support for Patients with SARS-CoV-2 Infections Registry (INSPIRE), a prospective multicenter cohort study. This report includes analysis of data on self-reported symptoms collected from 1,296 adults with COVID-like illness who were tested for SARS-CoV-2 using a Food and Drug Administration-approved polymerase chain reaction or antigen test at the time of enrollment and reported symptoms at 3-month intervals for 12 months. Prevalence of any symptom decreased substantially between baseline and the 3-month follow-up, from 98.4% to 48.2% for persons who received a positive SARS-CoV-2 test results (COVID test-positive participants) and from 88.2% to 36.6% for persons who received negative SARS-CoV-2 test results (COVID test-negative participants). Persistent symptoms decreased through 12 months; no difference between the groups was observed at 12 months (prevalence among COVID test-positive and COVID test-negative participants = 18.3% and 16.1%, respectively; p\u3e0.05). Both groups reported symptoms that emerged or reemerged at 6, 9, and 12 months. Thus, these symptoms are not unique to COVID-19 or to post-COVID conditions. Awareness that symptoms might persist for up to 12 months, and that many symptoms might emerge or reemerge in the year after COVID-like illness, can assist health care providers in understanding the clinical signs and symptoms associated with post-COVID-like conditions
Deltaproteobacteria (Pelobacter) and Methanococcoides are responsible for choline-dependent methanogenesis in a coastal saltmarsh sediment
Coastal saltmarsh sediments represent an important source of natural methane emissions, much of which originates from quaternary and methylated amines, such as choline and trimethylamine. In this study, we combine DNA stable isotope probing with high throughput sequencing of 16S rRNA genes and 13C2-choline enriched metagenomes, followed by metagenome data assembly, to identify the key microbes responsible for methanogenesis from choline. Microcosm incubation with 13C2-choline leads to the formation of trimethylamine and subsequent methane production, suggesting that choline-dependent methanogenesis is a two-step process involving trimethylamine as the key intermediate. Amplicon sequencing analysis identifies Deltaproteobacteria of the genera Pelobacter as the major choline utilizers. Methanogenic Archaea of the genera Methanococcoides become enriched in choline-amended microcosms, indicating their role in methane formation from trimethylamine. The binning of metagenomic DNA results in the identification of bins classified as Pelobacter and Methanococcoides. Analyses of these bins reveal that Pelobacter have the genetic potential to degrade choline to trimethylamine using the choline-trimethylamine lyase pathway, whereas Methanococcoides are capable of methanogenesis using the pyrrolysine-containing trimethylamine methyltransferase pathway. Together, our data provide a new insight on the diversity of choline utilizing organisms in coastal sediments and support a syntrophic relationship between Bacteria and Archaea as the dominant route for methanogenesis from choline in this environment
A Method to Quantify Mouse Coat-Color Proportions
Coat-color proportions and patterns in mice are used as assays for many processes such as transgene expression, chimerism, and epigenetics. In many studies, coat-color readouts are estimated from subjective scoring of individual mice. Here we show a method by which mouse coat color is quantified as the proportion of coat shown in one or more digital images. We use the yellow-agouti mouse model of epigenetic variegation to demonstrate this method. We apply this method to live mice using a conventional digital camera for data collection. We use a raster graphics editing program to convert agouti regions of the coat to a standard, uniform, brown color and the yellow regions of the coat to a standard, uniform, yellow color. We use a second program to quantify the proportions of these standard colors. This method provides quantification that relates directly to the visual appearance of the live animal. It also provides an objective analysis with a traceable record, and it should allow for precise comparisons of mouse coats and mouse cohorts within and between studies
Azospirillum Genomes Reveal Transition of Bacteria from Aquatic to Terrestrial Environments
Fossil records indicate that life appeared in marine environments ∼3.5 billion years ago (Gyr) and transitioned to terrestrial ecosystems nearly 2.5 Gyr. Sequence analysis suggests that “hydrobacteria” and “terrabacteria” might have diverged as early as 3 Gyr. Bacteria of the genus Azospirillum are associated with roots of terrestrial plants; however, virtually all their close relatives are aquatic. We obtained genome sequences of two Azospirillum species and analyzed their gene origins. While most Azospirillum house-keeping genes have orthologs in its close aquatic relatives, this lineage has obtained nearly half of its genome from terrestrial organisms. The majority of genes encoding functions critical for association with plants are among horizontally transferred genes. Our results show that transition of some aquatic bacteria to terrestrial habitats occurred much later than the suggested initial divergence of hydro- and terrabacterial clades. The birth of the genus Azospirillum approximately coincided with the emergence of vascular plants on land
Stac3 is a component of the excitation–contraction coupling machinery and mutated in Native American myopathy
Excitation-contraction coupling, the process that regulates contractions by skeletal muscles, transduces changes in membrane voltage by activating release of Ca2+ from internal stores to initiate muscle contraction. Defects in EC coupling are associated with muscle diseases. Here we identify Stac3 as a novel component of the EC coupling machinery. Using a zebrafish genetic screen, we generate a locomotor mutation that is mapped to stac3. We provide electrophysiological, Ca2+ imaging, immunocytochemical and biochemical evidence that Stac3 participates in excitation-contraction coupling in muscles. Furthermore, we reveal that a mutation in human STAC3 as the genetic basis of the debilitating Native American myopathy (NAM). Analysis of NAM stac3 in zebrafish shows that the NAM mutation decreases excitation-contraction coupling. These findings enhance our understanding of both excitation-contraction coupling and the pathology of myopathies
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome After SARS-CoV-2 Infection
IMPORTANCE: Chronic symptoms reported following an infection with SARS-CoV-2, such as cognitive problems, overlap with symptoms included in the definition of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS).
OBJECTIVE: To evaluate the prevalence of ME/CFS-like illness subsequent to acute SARS-CoV-2 infection, changes in ME/CFS symptoms through 12 months of follow-up, and the association of ME/CFS symptoms with SARS-CoV-2 test results at the acute infection-like index illness.
DESIGN, SETTING, AND PARTICIPANTS: This prospective, multisite, longitudinal cohort study (Innovative Support for Patients with SARS-CoV-2 Infections Registry [INSPIRE]) enrolled participants from December 11, 2020, to August 29, 2022. Participants were adults aged 18 to 64 years with acute symptoms suggestive of SARS-CoV-2 infection who received a US Food and Drug Administration-approved SARS-CoV-2 test at the time of illness and did not die or withdraw from the study by 3 months. Follow-up surveys were collected through February 28, 2023.
EXPOSURE: COVID-19 status (positive vs negative) at enrollment.
MAIN OUTCOME AND MEASURES: The main outcome was the weighted proportion of participants with ME/CFS-like illness based on the 2015 Institute of Medicine clinical case definition using self-reported symptoms.
RESULTS: A total of 4378 participants were included in the study. Most were female (3226 [68.1%]). Mean (SD) age was 37.8 (11.8) years. The survey completion rates ranged from 38.7% (3613 of 4738 participants) to 76.3% (1835 of 4738) and decreased over time. The weighted proportion of participants identified with ME/CFS-like illness did not change significantly at 3 through 12 months of follow-up and was similar in the COVID-19-positive (range, 2.8%-3.7%) and COVID-19-negative (range, 3.1%-4.5%) groups. Adjusted analyses revealed no significant difference in the odds of ME/CFS-like illness at any time point between COVID-19-positive and COVID-19-negative individuals (marginal odds ratio range, 0.84 [95% CI, 0.42-1.67] to 1.18 [95% CI, 0.55-2.51]).
CONCLUSIONS AND RELEVANCE: In this prospective cohort study, there was no evidence that the proportion of participants with ME/CFS-like illness differed between those infected with SARS-CoV-2 vs those without SARS-CoV-2 infection up to 12 months after infection. A 3% to 4% prevalence of ME/CFS-like illness after an acute infection-like index illness would impose a high societal burden given the millions of persons infected with SARS-CoV-2
Genetic effects on gene expression across human tissues
Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of diseas
A communal catalogue reveals Earth's multiscale microbial diversity
Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe
A communal catalogue reveals Earth’s multiscale microbial diversity
Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity
- …