8 research outputs found

    A gépi tanulás mindent megold? : elméleti modellek szerepe a napelem termelés előrejelzésben : [absztrakt]

    Get PDF

    Pairing Ensemble Numerical Weather Prediction with Ensemble Physical Model Chain for Probabilistic Photovoltaic Power Forecasting

    Get PDF
    Under the two-step framework of photovoltaic (PV) power forecasting, that is, forecasting first the irradiance and then converting it to PV power, there are two chief ways in which one can account for the uncertainty embedded in the final PV power forecast. One of those is to produce probabilistic irradiance forecast through, for example, ensemble numerical weather prediction (NWP), and the other is to pass the irradiance forecast through a collection of different irradiance-to-power conversion sequences, which are known as model chains. This work investigates, for the first time, into the question: Whether pairing ensemble NWP with ensemble model chain is better than leveraging any individual method alone? Using data from 14 utility-scale ground-mounted PV plants in Hungary and the state-of-the-art global mesoscale NWP model of the European Centre for Medium-Range Weather Forecasts, it is herein demonstrated that the best probabilistic PV power forecast needs to consider both ensemble NWP and ensemble model chain. Furthermore, owing to the higher-quality probabilistic forecasts, the point forecast accuracy is also improved substantially through pairing. Overall, the recommended paring strategy achieves a mean-normalized continuous ranked probability score and a root mean square error of 18.4% and 42.1%, respectively

    Comparing global and regional downscaled NWP models for irradiance and photovoltaic power forecasting: ECMWF versus AROME

    Get PDF
    Inspecting the literature, much effort has been placed on the verification of irradiance forecasts from numerical weather prediction (NWP) models, as such forecasts are thought to have profound implications on the photovoltaic (PV) power forecasts, which in turn affects grid operators' confidence in integrating such power into the electricity grid. However, perhaps due to the proprietary nature of PV plants and lack of access to state-of-the-art NWP model output, only few have had the chance to conduct head-to-head comparisons of global mesoscale and regional downscaled NWP models, in terms of how their irradiance forecast inaccuracies propagate to PV power forecasts. In this regard, this work presents such a study, in which irradiance and PV power forecasts from the European Centre for Medium-Range Weather Forecasts' High-Resolution (HRES) and Météo-France's Application of Research to Operations at Mesoscale (AROME) models are thoroughly verified against the ground-based measurements from 32 research-grade radiometry stations and 94 actual PV plants in Hungary. A wide range of techniques and case studies concerning verification is herein considered, including variance ratio analysis, Murphy–Winkler decomposition, point-versus-areal verification, and seasonal verification. Despite that the results are too numerous to be summarized in a few sentences, the overarching observation from the verification exercise is that the performance of irradiance forecasts can only be used to infer that of PV power forecasts to a certain extent, which contrasts the conventional wisdom

    Probabilistic modeling of future electricity systems with high renewable energy penetration using machine learning

    Get PDF
    The increasing penetration of weather-dependent renewable energy generation calls for high-resolution modeling of the possible future energy mixes to support the energy strategy and policy decisions. Simulations relying on the data of only a few years, however, are not only unreliable but also unable to quantify the uncertainty resulting from the year-to-year variability of the weather conditions. This paper presents a new method based on artificial neural networks that map the relationship between the weather data from atmospheric reanalysis and the photovoltaic and wind power generation and the electric load. The regression models are trained based on the data of the last 3 to 6 years, and then they are used to generate synthetic hourly renewable power production and load profiles for 42 years as an ensemble representation of possible outcomes in the future. The modeled profiles are post-processed by a novel variance-correction method that ensures the statistical similarity of the modeled and real data and thus the reliability of the simulation based on these profiles. The probabilistic modeling enabled by the proposed approach is demonstrated in two practical applications for the Hungarian electricity system. First, the so-called Dunkelflaute (dark doldrum) events, are analyzed and categorized. The results reveal that Dunkelflaute events most frequently happen on summer nights, and their typical duration is less than 12 h, even though events ranging through multiple days are also possible. Second, the renewable energy supply is modeled for different photovoltaic and wind turbine installed capacities. Based on our calculations, the share of the annual power consumption that weather-dependent renewable generation can directly cover is up to 60% in Hungary, even with very high installed capacities and overproduction, and higher carbon-free electricity share targets can only be achieved with an energy mix containing nuclear power and renewable sources. The proposed method can easily be extended to other countries and used in more detailed electricity market simulations in the future

    Matter manipulation with extreme terahertz light: Progress in the enabling THz technology

    Get PDF
    Terahertz (THz) light has proven to be a fine tool to probe and control quasi-particles and collective excitations in solids, to drive phase transitions and associated changes in material properties, and to study rotations and vibrations in molecular systems. In contrast to visible light, which usually carries excessive photon energy for collective excitations in condensed matter systems, THz light allows for direct coupling to low-energy (meV scale) excitations of interest, The development of light sources of strong-field few-cycle THz pulses in the 2000s opened the door to controlled manipulation of reactions and processes. Such THz pulses can drive new dynamic states of matter, in which materials exhibit properties entirely different from that of the equilibrium. In this review, we first systematically analyze known studies on matter manipulation with strong-field few-cycle THz light and outline some anticipated new results. We focus on how properties of materials can be manipulated by driving the dynamics of different excitations and how molecules and particles can be controlled in useful ways by extreme THz light. Around 200 studies are examined, most of which were done during the last five years. Secondly, we discuss available and proposed sources of strong-field few-cycle THz pulses and their state-of-the-art operation parameters. Finally, we review current approaches to guiding, focusing, reshaping and diagnostics of THz pulses. (C) 2019 The Author(s). Published by Elsevier B.V

    How to Change Economics 101

    No full text
    corecore