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ABSTRACT

The increasing penetration of weather-dependent renewable energy generation calls for high-resolution
modeling of the possible future energy mixes to support the energy strategy and policy decisions. Simulations
relying on the data of only a few years, however, are not only unreliable but also unable to quantify the un-
certainty resulting from the year-to-year variability of the weather conditions. This paper presents a new method
based on artificial neural networks that map the relationship between the weather data from atmospheric
reanalysis and the photovoltaic and wind power generation and the electric load. The regression models are
trained based on the data of the last 3 to 6 years, and then they are used to generate synthetic hourly renewable
power production and load profiles for 42 years as an ensemble representation of possible outcomes in the future.
The modeled profiles are post-processed by a novel variance-correction method that ensures the statistical
similarity of the modeled and real data and thus the reliability of the simulation based on these profiles.

The probabilistic modeling enabled by the proposed approach is demonstrated in two practical applications for
the Hungarian electricity system. First, the so-called Dunkelflaute (dark doldrum) events, are analyzed and
categorized. The results reveal that Dunkelflaute events most frequently happen on summer nights, and their
typical duration is less than 12 h, even though events ranging through multiple days are also possible. Second,
the renewable energy supply is modeled for different photovoltaic and wind turbine installed capacities. Based
on our calculations, the share of the annual power consumption that weather-dependent renewable generation
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can directly cover is up to 60% in Hungary, even with very high installed capacities and overproduction, and
higher carbon-free electricity share targets can only be achieved with an energy mix containing nuclear power
and renewable sources. The proposed method can easily be extended to other countries and used in more detailed
electricity market simulations in the future.

Nomenclature

Abbreviations
AMeDAS Automated Meteorological Data Acquisition System
ANN Artificial Neural Networks

CBT Constantly Below Threshold
CPU central processing unit
DL deep learning

ECMWF European Centre for Medium-Range Forecasts
ERAS5 ECMWEF reanalysis version 5

GBM gradient boosting

GHI global horizontal irradiance

GSA Global Sensitive Analysis

LMP Local Marginal Price

LPD load probability distribution
LSTM Long Short Term Memory

LWP low-wind-power

MAE mean absolute error

MAPE  mean absolute percentage error

MBT Mean Below Threshold

MPE mean percentage error

MRPE  maximal relative percentage error

MSE mean squared error

PICP prediction interval coverage probability
PINAW  prediction interval normalized average width
PSO Particle Swarm Optimization

PV photovoltaic

RF random forest

RMSD  root-mean-square deviation

RMSE root mean squared error

RNN Recurrent Neural Network

SCC squared correlation coefficient

SD standard deviation

SVM Support Vector Machines
SVR Support Vector Regression
VRE variable renewable energy
WP weather pattern

1. Introduction

The number and capacity of weather-dependent renewable energy
production units have exploded in recent years [1]. Increasing the share
of renewables is included in most energy policy objectives. However, in
many European countries, conventional power plant units are being
decommissioned, partly due to decarbonization targets. The increasing
share of renewable energy sources (RES) and the decreasing share of
conventional power plants raises questions on system stability and se-
curity of energy supply. If the current trend continues, the reliability of
the power production and consumption forecasts will determine the
reliability of electricity systems. As we seek to rely more and more on
renewables, the phenomenon of “Dunkelflaute” (hereafter abbreviated
as DF, known as “dark doldrum” in the English-speaking and “anticy-
clonic gloom” in the meteorological world [2]), where load factors of
wind and solar photovoltaic (PV) generation units are negligible, is
becoming increasingly critical for countries conducting energy transi-
tion [2-4]. On the other hand, the security of energy supply is critical
not only from a technical point of view, but also for the sustainability of
the energy transition. In order to keep the support of the society for this
development, such technical solutions are required that can ensure a
continuous and reliable electricity supply. There are several studies that
examined energy mix modeling [5,6] and optimization of energy
resource mix [7-11]. The probabilistic forecasting of renewable energy
production has also been the subject of many studies [12-16].

By analyzing of National Energy and Climate Plans of European
countries, it was observed that in such high-level documents, govern-
ments tend to oversimplify the calculations used as the basis for the
analysis of different energy scenarios [17]. However, it was proven in
several studies [7,10] that at least hourly resolution modeling of the
future energy mixes is required to determine which proportion of the
total demand the weather-dependent renewable technologies can supply
and how big capacity of flexible power plants will be required to keep
the system operational. Sharifzadeh et al. [18] predicted wind and PV
production to minimize the need for electricity storage and standby

capacities. Livas-Garicia et al. [19] have developed a market model that
can be used to investigate the market potential of regulating power
plants. Modeling the future energy mix at an hourly resolution not only
helps to better integrate renewable capacities, but also shows the market
potential of balancing capacities. Further use of such a model is to
investigate different energy storage systems (daily, weekly and seasonal)
and to determine the optimal storage mix.

It is a common practice to scale and project the annual production/
load profile from recent years to the future, but it does not take into
account the variability of weather, which undermines the reliability of
this practice [20,21]. Solar and wind energy productions are estimated
from probability distribution functions in several papers, e.g., Arriagada
et al. [22] applied bimodal normal distribution for PV and wind pro-
duction, Rakipour et al. [23] used Weibull distribution for wind speed
prediction and probability distribution functions (PDF) for solar irradi-
ance, and Ling Li et al. [24] used Rayleigh probability distribution
function for wind speed prediction and Beta distribution function for
solar prediction. However, these distributions are not related to the
actual weather, so this is not a reliable way to model PV and wind energy
production in the long term, as weather variability can only be taken
into account by looking at longer time series. A summary of the papers
dealing with high-resolution modeling of renewable generation and load
profiles is shown in Appendix C, Table C.9. Key aspects of this summary
are the time step and domain, the methodology, the databases used, and
the evaluation and utilization of the resulting profiles. Still, only a few of
these studies offer a possibility to quantify the uncertainty resulting
from the year-to-year variability of the weather conditions.

Uncertainty can be quantified by an ensemble method, where not
only one year’s data is used, but several decades from the past, as long
we can believe that the weather in the future will be somewhat similar to
the past. The fluctuating availability of renewable energy sources has
also been a known problem in the context of hydropower for several
decades. Many electricity systems with a high share of hydropower face
resource shortages when river levels fall. Such electricity systems are
found in some countries in South America [25-27] and Europe, typically
in the Balkans [28]. However, while hydropower production can be
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predicted for weeks or months by monitoring rainfall in water catch-
ment areas, the forecasting of wind and PV power production is much
more complicated, and the dynamic of production change is faster.

As discussed above the detailed analysis of future electricity systems
with a high share of weather-dependent RES requires hourly generation
and load profiles covering many years. However, weather dependent
RES data are in many countries only available for several years due to
the fact that most countries have started to build high renewable gen-
eration capacities in the last five to ten years. In contrast, atmospheric
reanalyses made historical hourly weather data covering multiple de-
cades available worldwide, which offers a good source to assess the
natural variability of RES. Wohland et al. [29] went even further, and
found, based on a reanalysis of 110 years of wind speed data, that even
multidecadal wind variability over such time scales have a significant
impact on wind power generation. In order to make use of these long-
term weather data in energy system simulations, a novel method
based on machine learning is proposed here that maps the weather data
to renewable power generation and electric load. Baumgartner et al.
[30] have also used neural networks to reproduce the production of
wind power plants in Germany using the MERRA-2 database. This
approach makes it possible to create synthetic hourly generation and
load profiles for multiple decades in which weather data are available,
which is suitable for probabilistic simulations by treating the profiles
from multiple years as an ensemble. The advantage of this methodology
compared to physical models [31,32] is that there is no need to collect
labor-intensive data (e.g. spatial distribution of installed capacity), but
only publicly available data is sufficient to obtain the appropriate result.

This method can be applied to any country that has historical
renewable generation and electric load data covering at least two or
three years; however, without the loss of generality, it is presented in
this paper for the case of Hungary. The electricity supply of Hungary
currently relies heavily on nuclear energy, fossil fuels and imports [17].
The country’s annual electricity consumption in 2021 was 47 TWh,’'
with a peak system load of 7 361 MW.? In the Hungarian electricity
system, besides further sources that are not in the scope of the present
analysis, there were 1830 MW solar PV, 320 MW wind, and 2000 MW
nuclear installed capacities.’ The future of the country’s energy sector is
set out in two government documents: the National Energy and Climate
Plan [33] and the National Clean Development Strategy 2020-2050
[34]. These documents forecast a significant increase in electricity
consumption in the country (58 TWh in 2030, 67 TWh in 2040, and up
to 83 TWh in 2050 due to widespread electrification) and a shift in the
electricity generation from fossil to solar (in the Hungarian system the
solar PV capacity could be 6 GW in 2030, 12 GW in 2040 and up to
60 GW in 2050), while maintaining the current presence of nuclear
power and a moderated level of imports.

The main contribution of this paper is to present an easy-to-use yet
effective machine learning (ML) method for the probabilistic modeling
of the future load and weather-dependent renewable generation profiles
simultaneously. This method can be applied to any country worldwide
where at least a few years of historical generation and load datasets are
available. An essential part of this procedure is a novel variance-
correction method that ensures the statistical similarity of the
modeled and real profiles. Based on 42 years of historical weather data,
probabilistic estimations were made on how inter-annual weather
variability affects renewable electricity generation. Quantifying the
weather-related uncertainties can help to make better decisions related
to the energy strategy.

The proposed method is demonstrated in two practical applications,

! https://www.mavir.hu/documents/10258,/240293410/R%C3%A9szlete
s+havi+brutt%C3%B3+energia+adatok+2021_12+HU+.pdf.

2 https://mvm.hu/hu-HU/Tevekenysegunk/AtvitelRendszerIranyitas.

% https://www.mavir.hu/documents/10258,/240839410/BT_2015-
20220701_ig BR+NT_HU.pdf.
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which are the modeling of Dunkelflaute events and the future electricity
mix in Hungary. These parts also show how the uncertainty quantified
by probabilistic modeling can be visualized in different kinds of dia-
grams. A novel categorization method is also proposed, which classifies
the severity of Dunfelklaute events based on the load of the electricity
grid.

The weather, load and generation data and the proposed method-
ology, including the machine learning, variance correction, and the
Dunkelflaute and energy mix modeling, are presented in Section 2. The
detailed process and the validation of the ML-based synthetic PV, wind,
and load profile generation are described in Section 3. Two possible
applications of the proposed method, namely the probabilistic modeling
of the Dunkelflaute events and future energy mix, are discussed in
Section 4. The main conclusions are drawn in Section 5.

2. Data and methods

The reliable probabilistic modeling of renewable energy production
in the future requires as many years of historical data as possible to cover
the possible widest range of weather conditions. Historical renewable
power generation data are only available from the last several years in
most countries; however, historical meteorological data have been
collected for decades. Based on this, the overarching idea of the pro-
posed method is as follows: first, the relationship between the meteo-
rological data and the country-wide PV and wind power generation and
system load is mapped by machine learning models. In the next step, the
trained models are used to generate power generation and load profiles
synthetically for multiple decades based on the long historical meteo-
rological datasets, which is 42 years in this case. Finally, the yearly
profiles of 42 years enable to perform the energy mix simulation sepa-
rately with the data for each year, resulting in 42 different outcomes,
which can be used then as an ensemble, allowing to assign uncertainty
information for all results.

This section presents the meteorological (Section 2.1) and the Hun-
garian solar and wind power production and electric load data (Section
2.2), the proposed artificial neural network (Section 2.3), the variance-
correction of the modeled data (Section 2.4), and the calculations
behind the applications presented in Section 4 of the paper (Section 2.5).

2.1. Weather data

The first step of the presented probabilistic energy mix modeling
methodology is to obtain historical weather data covering as much as
possible from the previous decades. The most important meteorological
variables for this purpose are ambient temperature, solar irradiance, and
wind speed. The most accurate weather data source is ground-based
measurement; however, its usage has several practical limitations,
including limited spatial coverage, restricted availability, and possible
inconsistencies over time. To circumvent these drawbacks, most re-
searchers rely on gridded weather datasets created by atmospheric
reanalysis. The aim of the reanalysis is to produce a complete and
consistent historical weather dataset by applying the data assimilation
system and physical models used for numerical weather predictions on
historical observations. The two most well-known global reanalysis
products are the 5th version of the European Centre for Medium-Range
Weather Forecasts (ECMWF) Reanalysis (ERA5) [35] and the Modern-
Era Retrospective analysis for Research and Applications, Version 2
(MERRA-2) [36]. Both reanalyses offer hourly data for more than four
decades with global coverage, but ERA5 has a higher, 0.25° spatial
resolution compared to the 0.5° of the MERRA-2. Moreover, a recent
validation of the global horizontal irradiance (GHI) of the two datasets
revealed higher accuracy for the ERA5 [37]; therefore, that reanalysis is
used and recommended in this study as a source of meteorological data.

The ERAS data can be retrieved from the Climate Data Store (CDS) of
the Copernicus Programme. The weather data required for the purpose
of this study can be found in the “hourly data on single levels” dataset
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Table 1
Annual average capacity factor of PV and wind power plants in Hungary be-
tween 2019 and 20217

2019 2020 2021
PV 16.01% 16.35% 16.87%
Wind 23.02% 21.00% 21.80%

“https://www.mavir.hu/documents/10258,/240748006/PV + STATISZTIKA -
HU_20220601_ig v2.pdf.

Table 2
Minimum, average, and maximum electric load and annual electricity con-
sumption of Hungary in the years 2015-2021.

2015 2016 2017 2018 2019 2020 2021

Minimum system 3 3 3 3 3 3 3
load, MW 152 237 332 210 394 167 525
Average system 5 5 5 5 5 5 5
load, MW 001 023 151 193 215 134 340
Maximum system 6 6 6 6 7 7 7
load, MW 424 707 746 805 072 058 332
Total annual 43.8 44.1 45.1 45.5 45.7 45.1 46.8
consumption,
TWh

under the following names:

Surface solar radiation downwards,
2 m temperature,

10 m u-component of wind,

10 m v-component of wind,

100 m u-component of wind,

100 m v-component of wind.

The data requests can be submitted through both an interactive
website! and the CDS Application Program Interface (API)° in Python
language. The interactive website also provides the code for the API
request matching the selected data configuration. Therefore, the easiest
way to obtain data for multiple years is to configure the request for one
year in the interactive surface, copy the resulting API code to a Python
script, and automatically download the data for all years in separate files
using a simple loop. The meteorological data used in this paper was
downloaded for the 42 complete years from 1980 to 2021 with an hourly
resolution for Hungary.

The geographical area of the data is set to the smallest sub-region
that covers the whole country. However, even after this spatial subset-
ting, some of the downloaded grid points fall outside the borders of the
country, and the weather in those points is not expected to affect the
renewable energy production inside the country. These unnecessary grid
points are filtered based on the Nominatim® reverse geocoding web
service of OpenStreetMap, which returns the address for the requested
geographical coordinates: if the country field of the address is Hungary,
the grid point is kept, otherwise it is deleted. If necessary, the address
provided by the reverse geocoding could also be used for grouping the
data, e.g., by states or counties. The number of grid points in Hungary is
177.

The unit of the surface solar radiation downwards variable is J/m?,
which has to be divided by 3600 s, the length of the accumulation
period, to convert it to the hourly average global horizontal irradiance in
W/m?2. The 2m temperature and the wind speed are in °C and m/s, thus,

# https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-singl
e-levels?tab=form.

5 The CDS API client is the cdsapi Python package, see further details: https
://cds.climate.copernicus.eu/api-how-to.

6 https://nominatim.org/.
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no further unit conversion is required. The v is the northward, while the
u is the eastward component of the wind speed, while the absolute wind
speed can be calculated as the norm of the vector using the Pythagorean
theorem.

2.2. Electric load and renewable power generation data

In addition to the data describing the weather, we needed informa-
tion about the Hungarian solar PV and wind power plants and the
Hungarian electricity consumption (system load) to perform the calcu-
lations. These were hourly production data and installed capacities for
solar PV and wind power plants and hourly system load data for elec-
tricity consumption. These data were downloaded from the website” of
the Hungarian Transmission System Operator (TSO), MAVIR Zrt. The
quality of these datasets is good, with no missing or spurious (e.g.,
negative) entries. For other countries, the above data may be available
from the websites of the TSOs of the countries concerned or, for Euro-
pean countries, from the ENTSO-E Transparency Platform.® However, in
the case of the ENTSO-E data source, a higher emphasis should be placed
on data quality control due to the shortcomings described in [17].

The hourly power generation data of the PV and wind power plants
are downloaded for the three years of 2019-2021. To normalize these
data and remove their increasing trend, the power outputs are converted
to capacity factors by dividing them by the actual installed capacity. The
installed capacity data is also available from the TSO; however, only
with a monthly resolution, which must be downscaled to an hourly
resolution to match the power generation data. The downscaling is
performed by linear interpolation between the known data points, as
this method ensures the best accuracy. The effect of the original reso-
lution of the installed capacity data and the different downscaling
methods are assessed in Appendix A.

The hourly resolution system load values are downloaded for the
period 2015 to 2021, and as a pre-processing before using them to train
the ML models, they are normalized to the average for the given year.
Data for 2020 are not used for the training of the model as it is highly
affected by the negative impacts of COVID-19 pandemic on Hungary’s
electricity consumption [38], so using the unrepresentative data of this
year would have led to less accurate results.

The average capacity factors of PV and wind power plants and
electricity consumption in Hungary are presented in Table 1 and 2.

2.3. Neural network

The relationship between the meteorological variables and renew-
able power production or electricity demand can be modeled using,
among others, nonlinear regression. Machine learning enables the
regression to be performed without any prior assumptions about the
shape of the function between the predictors (inputs) and the predictand
(output). Many different ML models exist that can perform nonlinear
regression. The current machine learning libraries in popular program-
ming languages, like scikit-learn in Python and caret in R, include a wide
range of models with a common, easy-to-use interface and thus enable
the practical use of ML without a deeper interaction with the underlying
mathematics. The most popular and versatile ML model is the artificial
neural network (ANN), which was inspired by the working principle of
biological neural systems. ANN shows a good performance in a wide
range of tasks, including the mapping of weather data to solar PV power
production, as shown in a comparison of 24 ML models for operational
PV power forecasting [39].

The basic unit of an ANN is an artificial neuron, which has multiple
inputs and one output, and the output is calculated by applying a
nonlinear activation function on the weighted sum of the input signals

7 https://www.mavir.hu/web,/mavir.
8 https://transparency.entsoe.eu.
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Table 3
Summary of the tuned hyperparameters of the neural network.

Hyperparameter Tested values

Number of neurons One hidden layer 10

50

100

200

10, 10

20, 20

50, 50

Learning rate 0.001

0.01

0.1

ReLU(x) = max(0,x)
e
T e teX

Two hidden layers

Activation function

tanh(x)

sigmoid,o(x) = =

[40]. Typical activation functions are the sigmoid logistic function, the
hyperbolic tangent, and the rectified linear unit (ReLU). The neurons
can be organized into a wide range of different architectures, of which
the advanced ones belong to the family of deep learning models. In this
study, a simple multilayer perceptron (MLP) is used, where the neurons
are arranged into subsequent layers. The input layer has one neuron for
each predictor, which does not process the data but only passes them
forward to the following layer. This is followed by one or multiple
hidden layers, each having an arbitrary number of neurons, while the
last layer is the output layer with one neuron with a linear activation
function for each predictand [41].

The parameters of the MLP are the weights of the neurons, and the
aim of the training is to find the parameters that ensure the best mapping
between the predictors and the predictand of the model. The optimal
parameters are typically found by a stochastic gradient-based optimi-
zation method, where the objective of the optimization is to minimize a
loss function that represents the errors of the modeled output. The
gradients of the loss function with respect to the parameters are derived
by the backpropagation algorithm, and the change of each parameter in
an iteration step is proportional to the gradient and a learning rate.

Machine learning models also have hyperparameters, which are set
in advance of the training, and affect both the convergence of the
training and the final performance of the model. In a MLP, the most
important hyperparameters are the number of neurons and hidden
layers, the activation function, and the learning rate [42]. To ensure the
best accuracy, the hyperparameters are selected by a tuning process, in
which different hyperparameter combinations are tested using a grid
search algorithm with a K-fold cross-validation, where K is selected as
the number of the years. i.e., one year is used for testing and the others
for training in each iteration step. The hyperparameters resulting in the
lowest errors on the test data are used for the final estimations. The
tested values of the three tuned hyperparameters are listed in Table 3.
The overfitting of the model is avoided by an early stopping routine.
10% of the training data is set aside for validation, and the training stops
if the score on the validation set does not show at least 10™ relative
improvement over 10 consecutive epochs.

In this paper, the MLP is implemented by the MLPRegressor class of
the scikit-learn Python package. Three different MLP models are created
and trained, one for the PV capacity factor modeling, named PV_ML,
another for the wind capacity factor modeling under the name
WIND ML, and the third for the mean-normalized electric load
modeling, called LOAD_ML. The details of these three models, including
the predictors, the tuned hyperparameters, and the achieved accuracy,
are presented in Sections 3.1-3.3 seperately for the three models.

2.4. Variance-correction of modeled data

All regression models require a loss function that is minimized during
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the training of the model. The most commonly used loss function is the
mean square error (MSE), which weights all errors proportional to the
size of the error, i.e., penalizes higher errors disproportionally more than
lower ones. That said, in a wide range of applications, including the
modeling of renewable energy production and load profiles, the most
important is to ensure the statistical similarity between the measured
and estimated data, which can be best reflected by similar probability
density functions (PDF). A necessary condition of similar PDFs is to have
the mean and the variance of the measured and estimated datasets as
close as possible, respectively. However, as highlighted in a recent paper
in the context of solar forecasting [43], MSE-optimized estimates are
always underdispersed. The underdispersion means that the estimated
data has a lower variance than the measured data, and the extremely low
and high values are less frequent in the modeled data than in reality,
which can fundamentally undermine the reliability of all studies that use
modeled data for analyzing extreme events.

The inevitable underdispersion is plain to see from the well-known
bias-variance decomposition of the MSE,

MSE(f,x) = V(f) + V(x) — 2p(f, x)/V(f)V(x) + MBE*(f, x) (€))

where f and x are the modeled (forecast) and measured data,
respectively, V(.) is the variance, p is the correlation coefficient, and
MBE is the mean bias error. Eq. (1) can be rearranged into the format

MSE(f,x) = [1 = p*(f,0)]V(x) + [o(f) — p(f,x)5(x) J* + MBE>(f, x) @)

where ¢(.) = /V(\) is the standard deviation. From Eq. (2), it fol-
lows that the MSE is minimized only if MBE(f,x) = 0, and o(f) =
p(f,x)o(x). Insofar as the p(f, x) correlation coefficient is lower than 1,
which always holds for a model with inaccuracy, the variance of the
modeled data is lower than that of the measured. The lower the corre-
lation coefficient is, the more underdispersed the estimates are.

The simplest way to correct the variance of the estimations is a linear
calibration,

f=a+b ©)]

where a and b are the scale and offset parameters, respectively. In
order to correct the variance of the modeled data, the scale parameter
should be set to the ratio of the standard deviations of the observations
and the estimates, which is, for an MSE-optimized model, theoretically
equal to the reciprocal of the correlation coefficient,

a=o(x)/o(f) = 1/p(f, ) “)

Scaling the estimates also changes the bias, which can be remedied
by selecting the offset parameter as

b = E(x) — aE(f) 5)

The scale and offset parameters can be derived using the correlation
coefficient and the mean of the observations and estimates calculated for
the training data, and then the linear correction can be used to post-
process the raw estimates for any unknown datasets. A more detailed
description of this method can be found in [43]. The effect of the linear
variance correction is demonstrated for the wind power factor estima-
tion in Appendix A.

2.5. Dunkelflaute and electricity supply modeling

The hourly-resolution data series of weather-dependent renewable
energy production and system load generated by the method presented
in this paper can be used in several practical applications, two of which
are discussed in more detail in this paper: modeling the primary energy
composition of the electricity production, and investigating Dunkel-
flaute conditions in which both solar PV and wind productions are low
or even negligible.

A DF event is a condition in which solar, onshore wind and offshore
wind all have low capacity factors. Hungary is landlocked, thus it has no
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possibility for offshore wind turbines, so in this paper, an hour is
considered to be in DF state if the capacity factors of solar and onshore
wind in Hungary are both below a given threshold value. Several
different examples of the DF threshold can be found in the literature, e.
g., [2,4,44] define it as 10%, and [3] uses 2%, 5% and 10% thresholds.
As there is no consensus about a standardized DF threshold value, three
different thresholds of 1%, 5%, and 10% are used in this paper. Math-
ematically, DF is described as follows:

DF' = (CFyy < TH) A (CF.,,,,, < TH) 6)

where DF is a Boolean indicating whether the i th hour is Dunkel-
flaute or not, CF,, and CF', ; -
factors in the i th hour, respectively, and TH is the threshold below
which a DF event is interpreted. In countries with potential offshore
wind power plants, a term with CFnq¢ < TH should also be added to
Eq. (6) to account for the offshore wind power plants.

The future energy mix is modeled with a simplified hourly resolution
electricity supply model of Hungary in 2030, which only includes the
electric load on the consumer side and the solar, wind, and nuclear ca-
pacity on the generation side (these capacities are at the beginning of the
merit order due to their low variable costs [45,46]). As the main aim of
this simple model is to identify the possible share of renewable and
carbon-free generation in supplying the electricity consumption, there is
no need to model further conventional power plants. Hydropower is not
considered for two reasons, 1) modeling of hourly resolution hydro-
power generation is not the scope of this research, and 2) hydropower is
not currently dominant in Hungary, nor do government documents
anticipate its growing role.

The hourly resolution electric load data are obtained by multiplying
the normalized load data, estimated by the LOAD_ML model, by the
average annual electric load. The average load can be calculated from
the expected total annual energy consumption by dividing it by the
length of the years. In the year 2030, the annual electricity consumption
of Hungary is projected to be 57.839 TWh [33], which equals an average
6602.6 MW system load.

The hourly resolution PV and wind power generation time series are
the product of the capacity factors estimated by the PV_ML and
WIND_ML models and the respective projected PV and wind installed
capacity, which are assumed to be constant during the modelled year.

are the PV and the onshore wind capacity

P ;gen.REs = CFpyICpy + CF, fv[ndﬂnl Curindon @)

where Pf;en.REs is the renewable power generation in the i th hour, and
ICpy and IC,nq,0n are the installed capacities of the PV plants and wind
turbines, respectively.

The assumed nuclear power plant is the Paks power plant in
Hungary, which has four units with 500 MW installed capacity each. In
our model this is defined as a base load power plant in the Hungarian
electricity system, i.e., it is assumed to generate 2000 MW power every
hour of the year, except from May to August. In these months, one of the
units is assumed to be under maintenance and refueling, resulting in a
constant 1500 MW output by the remaining three units. The carbon-free
power generation is calculated as the sum of renewable and nuclear
power, and it is calculated as:

Plppcr = CFpyICpy + CF,

wind,on

ICwind.an + P;m (8)

where P.,, . is the carbon-free and P,
ation in the i th hour.

Given the yearly generation and load time series, the next step is to
calculate what part of the load can be covered by the renewable gen-
eration in each hour. The load served by renewable generation can be

calculated as:

is the nuclear power gener-

i _ o (pi i
Ppeq = min (P cen.rs: I()uzl) C))
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where P, . is the load served by the renewables, and P;, , is the total
system load in the i th hour. This served power can also be called useful
power, as this is the part of the renewable power generation that can
directly be used by the consumers. If the renewable generation is higher
than the load, the excess generation is considered overproduction,
calculated as:

over

Pi = max (0‘ P;gen.RES - Pi}ud) (10)

The hourly served (useful) and excess energy is calculated by sum-
ming the hourly power values over the year multiplied by the length of
the timestep:

8760

E= Z;P’Ar a2)

where E is the annual energy, and At = 1h is the length of a timestep.
The share of the annual consumption covered by renewable energy
sources is calculated as:

Eservea

Pl
— Er sjrved (13)
Eiaa  2iPloaa

where Sggs is the share of direct renewable production in the total
consumption.

All calculations in Eq. (9-13) can also be performed for carbon-free
generation, which also includes nuclear power, instead of only renew-

SRES =

ables by simply substituting Pi,, g to P,

n.cr in all equations.

All the above-presented calculations rely on the time series data for
one year. Using the ML models, hourly-resolution profiles are generated
for all 42 years, which enables to perform all the above-presented cal-
culations independently for each year, yielding 42 slightly different re-
sults. These 42 outcomes are then treated as members of an ensemble,
each having an equal probability of representing the expected weather
conditions in 2030, and the spread of the outcomes indicates the un-
certainties resulting from the weather variability. Mathematically, the
results calculated for the 42 different sets of profiles are sorted into
ascending order and converted into a probability density function
assuming uniform spacing between each member.

3. Modeling renewable power generation and electricity
demand profiles

The detailed description of the machine learning model used for the
renewable energy generation (PV_ML and WIND_ML model) and elec-
tricity demand profile calculation (LOAD_ML model) and the evaluation
of the accuracy of the estimated profiles are summarized in the following
subsections. The predictors were selected in an iterative process, and
only the final set is presented in all three cases. The historical data used
for the training and testing of PV_ML and WIND_ML models cover the
three years of 2019-2021 for the PV and wind power, and the six years
of 2015-2021 for the electricity demand modeling in LOAD_ML model
(excluding 2020 due to the unrepresentative effects of the COVID-19
pandemic [38]). The evaluation of the modeled data is performed
using K-fold cross-validation, in which the full historical dataset is
divided into yearly subsets (i.e., K equals the number of years). For each
year, the training is performed using the data only from the other years,
and the evaluation is performed for the year of interest. In this way, it is
possible to evaluate how the model performs on unseen data.

The best convergence of MLP requires having all input and output
data scaled to the same order of magnitude. All predictors of the MLP are
scaled into the range of 0 to 1 by a linear transformation in order to
improve the convergence of the training. From the predictands, the PV
and wind capacity factors are naturally bounded by 0 and 1; therefore,
no further scaling is required. The electric load is already normalized by
its yearly average value during the pre-processing, squeezing the data
into a range of 0.65-1.35, which is also suitable for the MLP without
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Fig. 1. Daytime hourly national PV capacity factor observations and estimates, (a) histogram for the three years of 2019-2021, (b) time series plot for a randomly

selected sample period of 1st to 14th May 2021.

further scaling.

The accuracy of the estimated data is evaluated using the five met-
rics. The correlation coefficient reflects the potential accuracy of the
modeled data regardless of its calibration [47], and it is calculated as

cov(f,x)

pP=—r
o(f)o(x)
where f and x are the modeled (forecast) and measured data,
respectively, and cov(.) is the covariance. The mean bias error (MBE) is
the average of all errors, and large positive or negative values indicate a
systemic overestimation or underestimation, respectively.

(16)

1 N
MBE:N;(fi—x,-) a”
where N is the number of samples. The mean absolute error (MAE) is
the average of the absolute value of all errors, and it is equally sensitive
to the small and large errors regardless of their direction.

1 N
MAE = ; Ifi — xi] 18)

The root mean square error (RMSE) penalizes the higher errors more,
making it the most sensitive to the outliers.

19

Finally, the variance ratio, which is introduced in [48] as the ratio of
the variance of the estimated and measured data, gives a one-number
summary of the dispersion of the estimations. A variance ratio higher
or lower than one indicates overdispersed or underdispersed forecasts,
respectively.

_ V()
F=3&

(20)

In addition to these metrics, three graphs are also presented in each
case to provide a complete picture of the reliability of the estimations
(see the first examples in Fig. 1 (a), Fig. 1 (b) and Fig. 2):

e a histogram visualizing the distribution of the measured and
modeled data,

e a time series plot of the measured and modeled profiles for a sample
period, and

e an error “heat map” showing the differences between the modeled
and real data for all 8760 h of the year in a matrix form (hours per
day on the y-axis, days of the year on the x-axis), values represented
by colors.
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Table 4

Error metrics of the national PV power capacity factor estimations in PV_ML
model. All metrics are calculated for the cross-validation steps when the given
year is used as the test data.

2019 2020 2021 Overall
Correlation coefficient 0.986 0.987 0.985 0.985
MBE 0.006 0.001 —0.009 —0.001
MAE 0.020 0.019 0.023 0.021
RMSE 0.041 0.039 0.045 0.042
Variance ratio 105.4% 100.0% 91.4% 98.7%

3.1. Photovoltaic power capacity factor modeling (PV_ML model)

Theoretically, the power output of a PV system depends on the global
irradiance on the module surface and the cell temperature. The irradi-
ance on a tilted plane can be estimated from the horizontal irradiance by
a transposition model [49]. Transposition models treat the beam and
diffuse irradiance differently; therefore, the GHI must be decomposed
first into these two components using a separation model. In this paper,
the Engerer [50] separation and Perez [51] transposition models are
used to calculate the global tilted irradiance (GTI) due to their good
performance in previous studies [49,52]. The separation and trans-
position modeling also requires the position of the Sun, which is
calculated using the Solar Position Algorithm (SPA) [53] based on the
date and time and the geographic coordinates. Even though ML could be
capable of learning the irradiance transposition without physical
modeling, the pre-calculation of GTI improves the accuracy of the PV
power estimation. In this particular case, adding GTI to the inputs
improved the overall correlation from 0.983 to 0.985. A recent paper has
also shown that the GTI is an important and more effective predictor
than either the hour of the day or the Sun position angles for the ML-
based estimation of PV production [42].

The orientation of the PV modules may be very different in the
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distinct PV plants, and it is not known in detail; therefore, the GTI is
calculated for a representative, quasi-optimal orientation. The plane of
maximum irradiation in Hungary has a 35° tilt angle and south-facing
azimuth; however, it is common for PV plants to use a lower tilt angle
to avoid excessive shading and reduce the costs of the mounting struc-
ture [54]. Based on these assumptions, the GTI is calculated for a south-
facing surface with a 30° tilt angle at all grid points. The GHI and GTI are
both included among the predictors, as based on their difference, the
MLP may also be able to estimate the irradiance on differently oriented
module planes.

The cell temperature is affected by the ambient temperature, the GTI,
and the wind speed. The effect of wind speed on the PV power is typi-
cally low. If the wind speed data is not measured but modeled or fore-
casted, and therefore it has a significant inaccuracy, then considering it
in the model may also decrease the accuracy of the calculated PV power
[48]. For this reason, wind speed is not included in the PV power esti-
mation as a predictor. The cell temperature affects the PV output only
moderately through the module efficiency; therefore, the ambient
temperature data are not used individually for all grid points, but their
average is calculated for the whole grid, and it is included as a single
predictor.

The timesteps with zero GHI in all grid points are identified as
nighttime and filtered out from the training data of the PV_ML model.
Similarly, during the generation of the modeled PV profiles, the trained
PV_ML model is only used to estimate the solar PV load factor for the
daytime periods, while night values are automatically set to zero.

The predictand of the network is the aggregated national PV capacity
factor. The predictors were selected based on iterative testing of several
different input scenarios. The recommended set of predictors of the MLP
are (355 inputs in total):

e global horizontal irradiance individually for all grid points,
e global tilted irradiance individually for all grid points,
e 2 m Temperature averaged for all grid points.

The best hyperparameters, based on the tuning performed as
described in Section 2.3, are:

e 20-20 neurons in two hidden layers,
e a learning rate of 0.001,
e ReLU activation function.

The MLP with 355 inputs and 20-20 neurons organized into two
hidden layers network has 7561 parameters, which is already sufficient
to learn this complex relationship.

The five performance metrics are presented in Table 4 individually
for the three years of 2019-2021 and also overall for the whole three-
year period. The correlation coefficient is high, and the errors are rela-
tively low in all years; therefore, the modeling can be deemed quite
accurate. The MBE and variance ratio have some year-to-year variance,
but overall they are close to 0 and 100%, respectively. In line with these
metrics, the histogram in Fig. 1 (a) also demonstrates that the distri-
bution of the modeled dataset fits well with the measured one. The time
series plot in Fig. 1 (b) shows that the biggest errors are around the
midday peaks, but the direction of the differences varies daily, which
means that there is no systemic error in the estimations. In Fig. 2, the
differences between the modeled and real values of the hourly resolution
PV plant capacity factors are plotted as a heat map for the years
2019-2021. This representation allows to easily track if there was a
systematic time-dependent error pattern in the modeled data. The
analysis of the data in Fig. 2 shows no sign of systematic error in the
modeled data as the direction of the deviations varies over the whole
year.
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Fig. 3. Hourly national wind power capacity factor observations and estimates, (a) histogram for the three years of 2019-2021, (b) time series plot for a randomly

selected sample period of 1st to 14th May 2021.

3.2. Wind power capacity factor modeling (WIND_ML model)

The most influential factor on wind turbine power production is the
wind speed at the height of the turbine hubs. The typical hub height of
MW-scale wind turbines is around 80-120 m; therefore, the 100 m wind
speed is the most relevant predictor. Theoretically, it is possible to
correct the wind speed for different heights by the power law [55], but
as long as the exact heights of the wind turbines are not known in detail,
no such correction is applied. The power of the wind turbine also de-
pends on the density of air, which is influenced by the ambient tem-
perature. The temperature at the hub height is slightly lower than at 2 m
height, but the machine learning model is expected to account for this
difference.

The power in the wind, which is proportional to the cube of the wind
speed, and a theoretical wind turbine power output, calculated by
applying a theoretical power curve on the wind speed data, were also
tested as further predictors. However, in our experience, these pre-
dictors have slightly decreased the accuracy of the modeled data instead
of improving it; therefore, they are not used in the final model.

The predictand of the MLP is the aggregated national wind power
capacity factor, while the predictors are (532 inputs in total):

e ucomponent of the 100 m wind speed individually for all grid points,
e v Component of the 100 m wind speed individually for all grid points,

e absolute value of the 100 m wind speed individually for all grid
points,
e 2 m Temperature averaged for all grid points.

The best hyperparameters based on the performed tuning process
are:

e 20-20 neurons in two hidden layers,
e a learning rate of 0.001,
e hyperbolic tangent activation function.

The performance metrics for the wind turbine capacity factors are
presented in Table 5. The correlation coefficient is lower, the errors are
higher, and the year-to-year variability is also higher for the wind power
capacity factor compared to the PV capacity factor, which is in line with
the results of other studies [31,32]. The average capacity factor of the
wind power is also higher than that of the PV; therefore, compared to the
mean value, the errors are not significantly higher. The reason for the
relatively higher errors is the cubic dependence of the power on the
wind speed, which highly exaggerates the wind speed errors of the
reanalysis.

According to the histograms shown in Fig. 3 (a), the distributions of
the measured and modeled data are very similar. The time series plot of
Fig. 3 (b) shows that even though the model is not able to track all the
rapid but smaller changes in the wind power, it can properly reproduce
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Table 5

Error metrics of the national wind power capacity factor estimations in
WIND_ML model. All metrics are calculated for the cross-validation steps when
the given year is used as the test data.

2019 2020 2021 Overall
Correlation coefficient 0.947 0.935 0.945 0.942
MBE 0.002 0.004 0.001 0.002
MAE 0.054 0.055 0.050 0.053
RMSE 0.076 0.081 0.073 0.077
Variance ratio 90.1% 111.8% 94.8% 98.2%

the main tendencies and follow the bigger changes, and it captures
98.2% of the real variability of the wind power production. At this point,
it is important to note that these favorable results are largely attributed
to variance correction presented in Section 2.4. The error metrics and
the distribution and time series plots of the raw, uncorrected modeled
wind capacity factors are presented in Appendix B, along with a dis-
cussion on the main benefits of the proposed variance correction. The
heat maps of the wind power capacity factor modeling errors in Fig. 4
show no time-dependent systematic errors. However, here with
WIND_ML model the maximum errors are larger than for the PV power
plants with the PV_ML model, which is in line with the error metrics
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reported in Table 4 and 5.

3.3. Electric load profile modeling (LOAD_ML model)

The electric load profile has a very characteristic time dependence,
which can be described as the superposition of a typical daily, weekly
and seasonal pattern. To model this, the day of the year, day of the week,
and hour of the day are included among the predictors. The electricity
demand on holidays also differs from the ordinary days, therefore, a
binary variable specifying whether the given timestamp is on holiday or
not is also added to the predictors.

Finally, the electric load is also affected by the weather, which is
important to consider, as the main point of using historical weather data
is to model how the given weather conditions affect the generation and
load profiles [56]. For example, a general tendency is that in good
weather conditions with high solar irradiance and low wind speed,
people tend to spend more time outdoors, reducing domestic electricity
demand. Fortunately, if the amount of training data is sufficient, the
machine learning model can learn the connection between the meteo-
rological variables and the load conditions without the need to dig
deeper into the underlying effects and causes.

The predictand of the MLP is the mean-normalized electric load, The
predictors of the MLP are (seven inputs in total):

e Ambient temperature averaged for all grid points
e Absolute wind speed averaged for all grid points

e Global horizontal irradiance averaged for all grid points

e Day of year

e Hour of day

e Day of week

e Holiday

The best hyperparameters based on the performed tuning process
are:

e 200 neurons in a single hidden layer,
e a learning rate of 0.001,
e ReLU activation function.

The performance metrics are summarized in Table 6 individually for
each year and averaged for all six years. Overall, the accuracy of the
modeled data is between the wind and PV power capacity factor esti-
mations. Comparing the different years, the errors are significantly
higher in 2021 than in the other years, which can be attributed to the
prolonged effect of the COVID-19 pandemic, and the increasing installed
capacity of the behind-the-meter household-scale PV systems in
Hungary.

The distribution of the modeled electric load, similarly to the PV and
wind capacity factors, aligns well with the distribution of the measured
data, as shown by the histograms in Fig. 5 (a). The time series plots are
shown for the same period of two different years, 2017 and 2021, in
Fig. 5 (b) and (c). In 2017, the modeled load profiles fit well with the
measured load, but in 2021 the model overestimates the midday part of
the profiles on most days. The difference between the estimated and
measured load profiles resembles the PV capacity factors in Fig. 1 (b)
(please note how the low PV production on 8th May aligns with the low

Table 6
Error metrics of the mean-normalized electric load estimations. All metrics are calculated for the cross-validation steps when the given year is used as the test data.
2015 2016 2017 2018 2019 2021 Overall
Correlation coefficient 0.971 0.975 0.977 0.976 0.969 0.933 0.966
MBE 0.003 —0.003 0.000 —0.002 —0.006 0.002 —0.001
MAE 0.026 0.024 0.023 0.023 0.027 0.039 0.027
RMSE 0.034 0.031 0.030 0.031 0.035 0.051 0.036
Variance ratio 99.7% 98.1% 103.2% 102.0% 100.2% 95.6% 99.8%
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Fig. 5. Hourly mean-normalized electric load observations and estimates, (a) histogram for the six years of 2015-2019 and 2021, (b) and (c) time series plot for

randomly selected sample periods of 1st to 14th May 2017 and 2021, respectively.

errors in the load estimation on the same day), which supports that the
higher errors in 2021 are largely due to the behind-the-meter PV pro-
duction. Due to technical reasons, the power output of the household-
scale PV systems is not measured separately in Hungary, but it only
appears in the reduction of the load on sunny days. The load reduction
due to these PV systems could be accounted for by the LOAD_ML model
based on the solar irradiance predictor. However, the installed capacity
of these systems was significantly lower in the 2015-2019 period
compared to 2021; therefore, this load reduction appeared to a much
lower extent in training than in the test data (in the cross-validation, as
described in the introduction of Section 3, the model used for making the
estimations for 2021 is trained on the data of the other years).

Fig. 6 shows the heatmap of the errors of the load modeling for

11

2015-2021. The effect of household-scale PV systems can be clearly seen
in these plots: in 2015-2018, when the installed capacity of the Hun-
garian household-scale PV systems was still low, the model slightly
underestimates the load during daytime, whereas for 2021, there is a
massive daytime overestimation of the system load. Aside from this ef-
fect, there is no so time-dependent systematic error that would span
across all the years.

The lower accuracy for the year 2021 highlights the importance of
the behind-the-meter renewable energy production on the load profile
modeling. If the installed capacity of these household-scale renewable
generators increases from year to year, and their production profile is
not measured separately, they can deteriorate the accuracy of the load
profile estimations. In this study, the installed capacity of the household-
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indicate the results calculated from the real and modeled data for 2019-2021, respectively.
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Fig. 8. Probability density function, calculated from the 42 yearly modeled
data, of the yearly number of Dunkelflaute hours (PV and wind capacity factors
are simultaneously below a threshold) for three different thresholds, grouped
by demand categories.

scale PV systems is relatively low during most training years; therefore,
it can be assumed that the modeled load profile shows the real load with
only a low behind-the-meter PV production. As proposed for example in
or [17] study, accurate measurement and central data collection of
behind-the-meter PV production units by the TSO would be extremely
important to reduce the above mentioned errors.

3.4. Limitations

As with all simulations, the presented method also relies on several
assumptions that may pose limitations on the use of the modeled pro-
files. First, it is assumed that the weather will similarly develop in the
future as it has in the past, and climate change has no decisive effect on
renewable energy production or electricity consumption.

Second, it is assumed that the installed capacity of the PV and wind
power plants will have the same geographical distribution over the
country as today, and the design parameters of the new installations will
also be the same as those of the existing plants. As we do not know how
these factors will change in a long time horizon, this is a fair assumption,
except for such cases where there are still so few renewable power plants
that they are not distributed well enough and are not representative in
the long run. However, if it can be known that further renewable energy
projects will be developed in new locations or systematic changes in the
design parameters can be expected, the presented ML-based method can
be extended by physical modeling, in which the production of these
atypical plants are modeled by wind power curves and PV model chains
directly from the meteorological data.

Third, the load profile is assumed to be similar in the future as today.
This means that the effects of further electrification and the demand
changes due to the increasing penetration of electric cars and heat
pumps are not taken into account. In such cases, the method presented
here can be used to propagate the current profiles to the future, which
can be freely supplemented with expected future trends even with
several different scenarios if needed.
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4. Possible applications and discussion

This section presents two possible applications of the hourly pro-
duction and load profiles generated by the introduced machine learning
method. One possible application is the modeling of Dunkelflaute
events, which are the periods when the production of both solar PV and
wind power plants are low. These events are worth investigating
because they pose the highest risk to the security of the electricity supply
in electricity systems with high solar and wind penetration. The other
application is estimating the share of the electricity demand that
renewable energy sources can cover, which metric is a common target of
energy strategy documents. The following subsections demonstrate how
the 42-years-long modeled profiles can be used to make probabilistic
estimations that also quantify the year-to-year variability of the calcu-
lated metrics. The theoretical background behind these topics and the
exact methods and equations used to derive the results presented herein
are summarized in Section 2.5.

4.1. Dunkelflaute modeling

DF events can best be characterized by their annual frequency, which
is shown in Fig. 7 as a function of the threshold value. The width of the
prediction intervals, even with a 95% nominal coverage, is relatively
small, with lower and upper bounds around + 15% from the mean. To
test the reliability of the results based on the data estimated by the ML
model, individual curves are also plotted for the years 2019 to 2021; the
solid lines show the results for the real (which are used for the training)
and the dashed lines for the modeled (synthetic) capacity factor data.
The number of DF hours is underestimated by the modeled data for most
thresholds in all years, but the difference between the results for the real
and modeled data is lower than the difference between the years.
Therefore, even despite its slight underestimation, it is still more reliable
to use multiple years of modeled data instead of the real data of one
single arbitrary year, which justifies the usefulness of the proposed
method.

The results in Fig. 7 show that in Hungary, the annual frequency of
DF events never reaches zero, neither for the modeled nor for the real
values, which means that around 200-400 h should be expected every
year with absolutely no weather-dependent renewable energy produc-
tion. The annual DF hours are between 950 and 1450 for 5% and
1700-2300 for 10% thresholds. These results also provide an opportu-
nity to compare the Hungarian values with calculations for other
countries. For the 10% threshold, the Belgian data show 600-700 DF
hours per year [2], the EU28-wide DF can occur in 750-2000 h a year
according to different data series [44], and the German system is ex-
pected to have 600 DF hours on a yearly basis if only wind power gen-
eration is considered [2]. According to these results, DF is more frequent
in Hungary than in Belgium or Germany; therefore, Hungary should pay
more attention to the prediction and proper management of these
events. The high frequency of DF confirms that it is essential to have
conventional power plants or appropriate grid-scale storage capacities
in the future Hungarian electricity system to ensure the stable operation
of the electricity system during these critical periods.

4.2. Dunkelflaute event classification

DF is calculated only from the capacity factor of both the PV and
wind power plants; however, in practice, the negative consequences of
the DF events largely depend on the electricity demand. The DF during
the peak load hours poses a higher risk to the stability of the grid than a
DF during low demand. Following this idea, it is possible to classify the
DF hours into different demand categories. The demand category is
assigned to each hour of the year depending on which quartile the load
profile is in the given hour.

e QI: DF event in very high demand period.
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Fig. 10. Heatmap of the probability of DF hours with a 5% threshold for all hours of the year, calculated from the 42 years of modeled capacity factors.

e Q2: DF event in high demand period.
e Q3: DF event in medium demand period.
e Q4: DF event in low demand period.

The probability density functions of the number of DF hours in each
category are shown in Fig. 8 for 1%, 5%, and 10% thresholds.

The definition of DF is that both wind and PV power has low capacity
factors, which mostly occur during the night when the solar PV pro-
duction reduces to zero. The nighttime typically covers the daily peak
with the highest load several hours after sunset, but most of the night is
associated with low electricity demand. This is in line with the results of
Fig. 8, where most of the DF hours fall into the medium and low demand
categories. However, the number of DF hours falling into the very high
and high demand categories is also high, so the identification and
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analysis of these events are important for the security of supply of the
electricity system.

The exact risk of a DF event could be assessed by a detailed model
that includes the entire electricity system (consumption, renewable and
conventional generation units, cross-border capacities, and electricity
storage units). With such a model, one possible consequence of DF
events, the amount of unserved electricity, could be quantified, which
could be used as a basis for making clear statements about the future
security of supply risk of the Hungarian electricity system. The con-
struction of such a model is beyond the scope of the current paper but
could be the topic of future research.

The severity of a DF event depends not only on the electricity de-
mand but also on its duration. A DF ranging over only a few hours is
easier to cover with energy storage compared to longer events. To
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analyze the expected duration of contiguous DF events, Fig. 9 presents 4.3. Temporal distribution of Dunkelflaute hours

the boxplots of the yearly number of DF events of different lengths

evaluated for the 42 years for a 5% threshold. The boundaries of the box The frequency of DF events decreases as a function of length, with
indicate the lower and upper quartiles, the line inside the box stands for the exception of the 11-hour-long event frequency, for which a

the median, the whiskers show the rest of the distribution within 1.5
times of the interquartile range, while the dots represent the outliers.
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Table A7
Error metrics of the PV power capacity factor estimations for different installed
PV capacity data resolutions and downscaling methods.

Monthly data Yearly data
Interpolated Filled Interpolated Filled
Correlation coefficient 0.985 0.985 0.985 0.983
nMBE 0.000 0.004 —0.004 0.046
nMAE 0.021 0.021 0.021 0.050
nRMSE 0.042 0.043 0.042 0.096
Variance ratio 99.5% 103.6% 94.7% 162.3%

Table B8
Error metrics of the wind power capacity factor estimations without variance
correction.

2019 2020 2021 Overall
Correlation coefficient 0.947 0.935 0.945 0.941
nMBE 0.000 0.003 0.001 0.001
nMAE 0.056 0.054 0.051 0.054
nRMSE 0.078 0.078 0.072 0.076
Variance ratio 81.0% 103.1% 85.9% 89.3%

significant peak in the results emerges. This peak is due to the fact that
DF events typically occur at night and the average length of these sunless
periods is approximately 11 h in Hungary.’ The maximum length that
occurs on a yearly basis (i.e., the median is higher than zero) is 19 h, and
the longest DF event in the 42 years of data lasts more than 2.5 days.
In addition to the annual frequency and duration of a DF event, it is
important to analyze when the event occurs within the year. To deter-
mine this, the probability of whether an hour is DF or not is plotted on a
heatmap in Fig. 10. Based on the analysis of Fig. 10 and the hourly value
of the utilization factor of solar and wind power plants in Hungary

9 https://www.worlddata.info/europe/hungary/sunset.php.
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presented in [17], it can be stated that DF events typically occur when
there is no solar generation and are most frequent in the winter and
August-September months when weather conditions are unfavorable for
wind-based power generation. The overall highest probability of DF is in
August in the hours before sunrise and after sunset. Daytime DF only
occurs in winter, but they have a relatively low probability even during
this period.

4.4. Possible role of renewable and nuclear energy in 2030

In this section, 42 years of data series computed with the ML models
are fed into the simplified electricity supply model presented in Section
2.5. The electricity supply model applies to the electricity system of
Hungary in 2030 (presented in the introduction and in sections 2.2 and
2.5). The average electricity system load is assumed to be 6602.6 MW
based on government documents. All results are calculated for different
values of installed PV and wind turbine capacities in order to analyze the
effects of the increasing penetration of these renewable generation
capacities.

Fig. 11 shows the share of electricity consumption that can be
directly covered by domestic PV and wind power production as a
function of installed PV capacity, assuming 3000 MW of installed wind
turbine capacity. The shape of the curve is concave, which means that as
PV capacity increases, the added value of new capacity decreases due to
the fact that the increasing renewable power generation will eventually
exceed the system demand, resulting in overproduction in the system.
The relative width of the prediction intervals is only around +5-10%
from the mean, which is even smaller than for the DF hours presented in
Fig. 7.

The results for 2019 and 2021 are shown with solid lines for the real
and dashed lines for the ML-modeled capacity factor data. The real data,
in this case, refers to the capacity factor and normalized load data
derived from the TSO, which are, similarly to the modeled data, scaled
for 2030 by the expected PV and wind capacities and total electricity
demand. The use of the modeled data still leads to a small inaccuracy,
but the direction of the errors is different for the two years, which
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plot for a sample period of 1st to 14th May 2021.

suggests that there is no systematic overestimation or underestimation;
therefore, the modeled results can be deemed quite reliable.

Fig. 12 is similar to Fig. 11, except that it plots the renewable share
up to higher installed PV and four different installed wind turbine ca-
pacities. The percentages on the vertical axis can be easily converted to
the annual amount of useful renewable power generation by multiplying
them by 57.839 TWh, the assumed total annual electricity consumption
in the year 2030.

Analyzing the data in Fig. 12, the following statements can be made:

e Without energy storage, the recommended capacity of PV power
plants is around 10-12 GW. Above this point, the added value of
further PV capacity additions largely decreases; thus, it is better to
invest in wind turbines or in other type of production capacities.
The year-to-year variance of the estimated renewable share (repre-
sented by the width of the prediction intervals) increases signifi-
cantly with increasing installed wind power capacity, while it is only
slightly affected by the PV capacity. This means that the probabilistic
modeling method proposed in this paper is even more important in
countries with high wind power capacity than in countries with high
PV capacity.

Even for the maximum examined renewable capacity, which is
around five times the peak load of the Hungarian system, the
renewable share is still only around 60%, which is far from the 100%
renewable goals. This result shows that the 100% decarbonization of
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electricity production cannot be achieved only by increasing the
installed renewable generating capacities, but other carbon-free
electricity generation units and/or grid scale electricity storage is
also essential.

Fig. 13 shows the derivative of the useful energy production by the
installed PV power; in other words, the useful annual energy production
of each MW of newly installed PV power plants. The added value (i.e.,
the directly useable electricity production) of the new PV installations
starts to decrease rapidly right from 5 to 6 GW installed PV power, and it
is only around half of its total energy production at only 10 GW installed
PV.

The amount of excess energy produced by the wind turbines and PV
plants is shown in Fig. 14. Depending on the conditions, this energy must
either be exported, stored, or curtailed. Overproduction arises at the
earliest when there is 5-8 GW of installed solar capacity (except when
there are 10 GW of wind capacity in the system), which means that when
the installed capacity of solar power plants in the Hungarian system
reaches this level, the Hungarian TSO and the policy makers should have
a plan in place for what to do with this unused electricity. The export of
unused electricity from the overproduction of solar power plants is also
questionable, because if the neighboring countries increase the installed
capacity of solar power plants according to their planned energy strat-
egy [17], there will be no market for this electricity in the region and
only storage or curtailment will be a real option to solve the problem, if
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Table C9
Summary of previous research on modeling electricity demand and renewable production profiles using different methods and databases.
Authors Year of Timestep ~ Meteorological data  Estimation of profiles Method Evaluation of the Use of the GDS Domain
publication generated data
series (GDS)
Matsuo etal. 2020 hourly AMeDAS - Solar: from solar Linear - Solar: nothing Analysis of: Power Japan
[58] irradiance data Programming, - Wind: nothing storage requirement
(empirical) Cummulative Demand: - Substitution among
- Wind: from wind Residual Load Comparison of the  the VRE technologies
velocity (power law) estimated and Substitution between
- Demand: artificial actual electric storage systems
neural network demands (R2 = - The role of firm
0.9678) capacities
Ohba et al. 2022 hourly AMeDAS Solar and wind Self-Organizing - Solar: - Investigation of dark ~ Thoku region
[4] generation Map Comparison of the  doldrum events for a (Japan)
reconstructed by estimated and period of one (DD1),
observational data actual electric three (DD3), or five
(wind velocity, demands (R2 = (DD5) days
surface air 0.987814) Wind: - SOM to establish a
temperature and Comparison of the  link between various
sunshine duration) estimated and WPs and their impact
actual electric on local VRE
demands (R2 =
0.992623)
- correlation
coefficient in
learning period
greater than 0.98
while outside of
the learning
period is about
0.94
Li et al. 2020 quarter- Belgium specific - Weather Research - Recreating a near the
[2] hourly datasets and Forecasting Dunkelflaute event coast of
with the WRF model Belgium
and comparing the
results of the model
with observational
data (wind speed,
wind direction, wind
power, shortwave
radiation,
temperature, sensible
heat flux)
Guo et al. 2018 - Weather-related Load forecasting Multi-layer The performance - load foresting Three case
[59] factors (rainfall withRF, GBMandDL  Perceptron of a model is purposes (deep neural  studies in
levels, daily methods evaluated by the network) China
temperatures, etc.) MRPE, MAPE, and - investigate the
MAE performance of a deep
neural network with
(MLP) functions
- identifying the most
influential factors
- data visualizations
explore electricity
consumption patterns
Bedi and 2019 quarter- - Load forecasting Deep learning - Assessing the Predicting the India
Toshniwal hourly with four regression based framework prediction electricity demand of
[60] models - SVM, ANN, accuracy of the UT Chandigarh with
RNN and LSTM learning/ SVM, ANN, RNN and
regression models LSTM
with RMSE, R and
MAPE
- R2 are between
0.653 and 0.96 for
typical days
Ohlendorf 2020 hourly MERRA-2 dataset Wind generation Aggregating - - Analyze two Germany
and Schill from wind velocity capacity factors of different (MBT and

[3]

(logarithmic power
law) at three types of
wind zones (based on
mean local wind
speeds)

19

wind power plants
using a weighting
scheme
considering the
current
distribution of
wind power in
Germany

CBT) LWP periods of
2%, 5% and 10%
capacity factor

- Seasonal
distribution and
frequency of LWP
events

- Magnitude of the
most extreme LWP

(continued on next page)
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Authors Year of Timestep ~ Meteorological data  Estimation of profiles Method Evaluation of the Use of the GDS Domain
publication generated data
series (GDS)
events
- Spatial distribution
of wind power during
most extreme LWP
event
Huang et al. 2020 hourly Temperature and Load range Convolutional The comparisons - Generating load New England
[61] humidity (there are  discretization Neural Network of load probability
also non- method to generate probabilistic distributions
meteorological LPD for CNN forecasting results - Optimizing the load
input data such as based on 7 probability
historical load, methods distributions for
electricity price and training samples
the type of the day)
Huang et al. 2020 hourly Solar irradiance, Daily-ahead quantile Five metrics to - Analysis of the -
[62] temperature probabilistic PV Convolutional evaluate the predicted PV powers
humidity and power forecasting Neural Network prediction effect, with different
historical method based on an including RMSE, quantiles
photovoltaic power improved QCNN MAPE, SCC, PICP - Comprehensive
and PINAW. analysis of the
prediction results of
the different methods
- Demonstration of
the daily-ahead
probabilistic PV
power forecasting
result based on QCNN
- Prediction effect of
QCNN under different
weather conditions
Livas-Garcia 2022 hourly SMN-CLICOM / Demand: ANN ANN, Global Demand: R2 = Electricity market Mexican
et al. IEM Sensitive Analysis, 0.9104 - 0.9241 forecast southeast
[19] Multi-layer region
Perceptron
Sharifzadeh 2019 hourly Renewables.ninja - Solar: solar power, ANN, Support - MPE: solar Predicting wind and - Solar and
et al. website temperature, direct Vector Regression, 10.38%, wind: solar production and wind:
[18] and diffuse Gaussian Process 8.3% and demand: electricity demand Canterbury,
irradiance Regression 3.67% UK
- Wind: wind power, - R2: solar: - Demand: 1
temperature and nothing, wind: R2 157
wind speed at 10 m after 6-step: 0.94 households
- Demand: electricity (ANN) and
energy demand: nothing
- Hourly and
seasonal variables
were used in all 3
Dosdogru 2022 hourly Winnipeg - Wind: predicting Extreme Gradient - Taylor diagram Wind speed Winnipeg
et al. [63] and daily =~ Weatherstats. wind speed based on  Boosting, Adaptive (SD, RMSD, R) prediction
hybrid methods Boosting, ANN, - The performance
(XGBoost, ANN, PSO of a models is
AdaBoost) and evaluated by
determining RMSE, MSE, MAE
parameter and CPU
optimizing with PSO
Mensour 2017 daily and ~ Souss-Massa Solar: average ANN, Multi-layer - The performance  Predicting global South-West
et al. [64] monthly specific monthly solar Perceptron is validated by monthly solar of Morocco
meteorological data  radiation using ANN RMSE, MAE and R radiation
based on - Measured and
geographical and predicted values
meteorological data correlation
coefficient R =
0.98725
Elattar et al. 2020 hourly Other publications Probabilistic Efficient Salp Evaluated using a Predicting solar -
[65] approach based on Swarm Algorithm, typical grid- generation, wind
(2 m + 1) point Slap Swarm connected generation, load
estimate method and  Algorithm microgrid. demand and market

ESSA to model the
uncertainties in solar
generation, wind
generation, load
demand and market
prices

prices
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there will be enough storage capacities that time (this is not the case at
the moment). The scale of the problem could be decreased in the future
by relying on synergies of sector coupling (eg. electricity, transport,
heating, electrification of heavy industry) [57]. Moreover, the real
amount of excess energy will be even higher than the modeled values
due to the part-load operation constraints and the limited load change
rate of conventional power plants.

Fig. 15 is similar to Fig. 12, with the difference that it shows the share
of not only renewable but the whole carbon-free electricity generation,
which also includes the production of the 2000 MW nuclear power plant
in Hungary. The significantly larger values in Fig. 15 than in Fig. 12
show that nuclear power is essential to achieve a high share of carbon-
free electricity production. However, even with the existing nuclear
power plant and very high PV and wind capacities, it is still not possible
to reach the 90% carbon-free electricity generation target for 2030. This
result shows that if Hungary is to meet its carbon-free electricity gen-
eration targets, it will need to invest in technologies that can either
produce electricity in a similarly carbon-free way (nuclear, biomass,
geothermal) or store electricity on a large scale and over a long time
horizon (pumped storage, batteries, power-to-gas), in addition to solar
and wind power plants.

This brief analysis does not account for energy storage. Without
storage, even with the heavy overcapacities of renewable sources, it is
hard to increase the share of renewable electricity above 40-50%.
Installing energy storage will also increase the added values of the
further PV and wind capacities, as it can reduce curtailment by storing
the excess energy. Import and export options are also not considered, but
it should be noted that exporting is a viable way of using excess energy,
but its availability depends on the neighboring countries and the
available cross-border transmission capacities.

A simplification of the above-presented electricity supply model is
that the maximum ramp-up and ramp-down rates and the minimum
part-load power of conventional power plants are not considered. These
constraints reduce the useful power and thus increase the excess energy
production of PV and wind power plants in reality compared to the
model, which means that the share of renewables in the real electricity
system will be even lower than presented above. More accurate results
could only be achieved by creating a detailed electricity market model,
which is out of the scope of the present study, but an important direction
for future research.

5. Conclusions

In this study, an easy-to-use neural network model is proposed to link
weather factors to the solar and wind power generation and electric load
and to create hourly-resolution synthetic profiles based on 42 years of
atmospheric reanalysis weather data. To reduce statistical errors be-
tween synthetic and real data, a variance-correction technique is also
presented in this article. The profiles for multiple decades enable per-
forming probabilistic analyses that can quantify the uncertainty result-
ing from the year-to-year variability of weather in the simulations. The
proposed method is demonstrated for Hungary in this paper, but it can
be implemented to any country where sufficient data on renewable
energy production and electricity consumption are available.

Two applications of the proposed method are presented through the
example of Hungary, namely the investigation of Dunkelflaute (DF)
events and the analysis of renewable and carbon neutral electricity
generation through a simplified electricity supply model. The results
show that with a 10% threshold, the number of DF hours is 1800-2300
in Hungary, higher than in the countries studied in the literature
(Belgium, Germany). Therefore, Hungary should invest sufficient re-
sources in dealing with these events, e.g., installing conventional power
plants and/or sufficient electricity storage capacities, to ensure the
continuous supply. To evaluate the severity of DF events, a novel cate-
gorization method based on electricity consumption was introduced.
The majority of DF hours fall into the low (Q1) or medium (Q2)
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consumption category, but the number of hours in the high (Q3) and
very high (Q4) categories is also high, which highlights the need for a
more accurate analysis of these events. Most of the DF events last only
for a few hours, but longer-term events of up to 19 h can be expected on
an annual basis, too.

The results of the Hungarian electricity supply model for 2030 show
that even with a very high installed renewable capacity of 30 GW
photovoltaic (PV) and 10 GW wind power, the direct renewable gener-
ation can only cover up to 60% of the annual consumption. If the nuclear
power plant in Hungary is also considered, it is possible to reach a much
higher carbon-free share in the electricity consumption even with lower
renewable generating capacities, which underlines the role of nuclear
power in meeting the emission reduction targets. The uncertainty of the
renewable share modeling is more affected by the installed wind turbine
capacity than by the PV capacity. The directly usable electricity pro-
duction of new PV plants starts to decrease significantly above 5-6 GW
of installed capacity, which calls for the investment in large electricity
storage capacities to make use these capacities instead of curtailing their
overproduction. The model results also indicate that energy policy de-
cisions need to be supported by high - at least hourly — resolution sim-
ulations, as opposed to the current practice, which is to rely on annual
balances and simulations of representative days.

Possible future works include the extension of the presented machine
learning model to other countries and the development of an electricity
market model that includes different countries, individual power plants,
storage facilities, and cross-border capacities in order to better under-
stand the probability of DF events and the associated security of supply
risks at both the Hungarian and the European electricity system level.
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Appendix

Appendix A. . Effect of the availability of PV installed capacity data

The renewable power production is available with an hourly reso-
lution from most data sources; however, the installed capacity is typi-
cally only published with a monthly or even yearly resolution (e.g., the
ENSTO-E Transparency Platform contains only a single installed ca-
pacity value for each year). To calculate the hourly capacity factor, the
installed capacity data must be downscaled to hourly resolution, which
can be done either by interpolating or filling. Filling means that all
hourly values of the given month or year are considered the same as the
single available data, while interpolation assumes a linear increase of
the installed capacity over time between the known data points.

In Hungary, the installed capacity of wind turbines was constant over
the studied three-year period, while the installed utility-scale PV ca-
pacity increased from 423 MW at the beginning of 2019 to 1829 MW at
the end of 2021. To examine the effect of the different downscaling
strategies and the resolution of the installed capacity data, the errors of
the PV capacity factor modeling, calculated in the same way as in Sec-
tion 3.1, are shown in Table A7. Overall, the best accuracy belongs to the
case when monthly data are interpolated, so this should be the recom-
mended practice if the data availability allows it. However, the results
calculated for the interpolated yearly data are almost the same as for the
monthly data, which means that the presented method can also be used
without any significant error increase, even if the installed capacity is
only available on a yearly basis. The downscaling by filling is generally
not recommended, especially for yearly data, as it largely increases the
modeling errors.

Appendix B. . Effect of the variance correction on the wind
power estimates

This appendix presents the evaluation of the raw wind power ca-
pacity factor outputs of the ML model without the variance correction
presented in Section 2.4. As a comparison, the variance-corrected results
are described in Section 3.2. The error metrics of the raw estimations are
summarized in Table B8. The average variance ratio for the three years is
only 89.3% for the uncorrected estimations, which clearly shows their
underdispersion, while the variance ratio of the corrected estimations is
significantly higher, 98.2%. Otherwise, the error metrics are not
significantly affected by the variance correction.

The histograms in Fig. B16 (a) also indicate the underdispersion of
the raw estimations, as there are significantly fewer extremely low and
higher capacity factor values in the modeled dataset than in the
measured. The tendency that the raw estimations vary in a narrower
range than the real measured capacity factors is also apparent in
Fig. B16 (b). In the one hand, the lack of extremely low values can cause
a significant error in the modeling of the DF events, as the number of DF
hours is, by definition, directly connected to the frequency of the low
capacity factor values. On the other hand, the lack of extremely high
values underestimates the overproduction of renewable energy sources
and thus the resulting curtailment, and overestimates the share of the
electricity consumption that can be covered by renewables. Conse-
quently, such severely underdispersed datasets are practically unusable
for these applications. Fortunately, as shown in Fig. B16 in Section 3.2,
the variance correction can effectively reduce the underdispersion and
make the modeled capacity factor time series suitable for the reliable
modeling of the DF events and the future energy mix. See Fig. B16 and
Table B8.

Appendix C. . Comparative table of key literature references

See Table C9.
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