57 research outputs found

    Comparison of Spectral Radiance Calibration Techniques Used for Backscatter Ultraviolet Satellite Instruments

    Get PDF
    Methods for determining the absolute radiometric calibration sensitivities of backscatter ultraviolet (BUV) satellite instruments are compared as part of an effort to minimize pre-launch calibration errors. An internally illuminated integrating sphere source has been used for the Shuttle Solar BUV (SSBUV), Total Ozone Mapping Spectrometer (TOMS), Ozone Mapping Instrument (OMI), and Global Ozone Monitoring Experiment 2 (GOME-2) using standardized procedures traceable to national standards. These sphere-based sensitivities agree to within three percent [k equals 2] relative to calibrations performed using an external diffuser illuminated by standard irradiance sources, the customary radiance calibration method for BUV instruments. The uncertainty for these calibration techniques as implemented at the NASA Goddard Space Flight Centers Radiometric Calibration and Development Laboratory is shown to be 4 percent at 250nm [k equals 2] when using a single traceable calibration standard. Significant reduction in the uncertainty of nearly 1 percent is demonstrated when multiple calibration standards are used

    Polar Mesospheric Clouds (PMCs) Observed by the Ozone Monitoring Instrument (OMI) on Aura

    Get PDF
    Backscattered ultraviolet (BUV) instruments designed for measuring stratospheric ozone profiles have proven to be robust tools for observing polar mesospheric clouds (PMCs). These measurements are available for more than 30 years, and have been used to demonstrate the existence of long-term variations in PMC occurrence frequency and brightness. The Ozone Monitoring Instrument (OMI) on the EOS Aura satellite provides new and improved capabilities for PMC characterization. OMI uses smaller pixels than previous BUV instruments, which increases its ability to identify PMCs and discern more spatial structure, and its wide cross-track viewing swath provides full polar coverage up to 90 latitude every day in both hemispheres. This cross-track coverage allows the evolution of PMC regions to be followed over several consecutive orbits. Localized PMC variations determined from OMI measurements are consistent with coincident SBUV/2 measurements. Nine seasons of PMC observations from OMI are now available, and clearly demonstrate the advantages of these measurements for PMC analysis

    Earth observations from DSCOVR EPIC instrument

    Full text link
    The National Oceanic and Atmospheric Administration (NOAA) Deep Space Climate Observatory (DSCOVR) spacecraft was launched on 11 February 2015 and in June 2015 achieved its orbit at the first Lagrange point (L1), 1.5 million km from Earth toward the sun. There are two National Aeronautics and Space Administration (NASA) Earth-observing instruments on board: the Earth Polychromatic Imaging Camera (EPIC) and the National Institute of Standards and Technology Advanced Radiometer (NISTAR). The purpose of this paper is to describe various capabilities of the DSCOVR EPIC instrument. EPIC views the entire sunlit Earth from sunrise to sunset at the backscattering direction (scattering angles between 168.5° and 175.5°) with 10 narrowband filters: 317, 325, 340, 388, 443, 552, 680, 688, 764, and 779 nm. We discuss a number of preprocessing steps necessary for EPIC calibration including the geolocation algorithm and the radiometric calibration for each wavelength channel in terms of EPIC counts per second for conversion to reflectance units. The principal EPIC products are total ozone (O3) amount, scene reflectivity, erythemal irradiance, ultraviolet (UV) aerosol properties, sulfur dioxide (SO2) for volcanic eruptions, surface spectral reflectance, vegetation properties, and cloud products including cloud height. Finally, we describe the observation of horizontally oriented ice crystals in clouds and the unexpected use of the O2 B-band absorption for vegetation properties.The NASA GSFC DSCOVR project is funded by NASA Earth Science Division. We gratefully acknowledge the work by S. Taylor and B. Fisher for help with the SO2 retrievals and Marshall Sutton, Carl Hostetter, and the EPIC NISTAR project for help with EPIC data. We also would like to thank the EPIC Cloud Algorithm team, especially Dr. Gala Wind, for the contribution to the EPIC cloud products. (NASA Earth Science Division)Accepted manuscrip

    First Top-Down Estimates of Anthropogenic NO_x Emissions Using High-Resolution Airborne Remote Sensing Observations

    Get PDF
    A number of satellite‐based instruments have become an essential part of monitoring emissions. Despite sound theoretical inversion techniques, the insufficient samples and the footprint size of current observations have introduced an obstacle to narrow the inversion window for regional models. These key limitations can be partially resolved by a set of modest high‐quality measurements from airborne remote sensing. This study illustrates the feasibility of nitrogen dioxide (NO_2) columns from the Geostationary Coastal and Air Pollution Events Airborne Simulator (GCAS) to constrain anthropogenic NO_x emissions in the Houston‐Galveston‐Brazoria area. We convert slant column densities to vertical columns using a radiative transfer model with (i) NO_2 profiles from a high‐resolution regional model (1 × 1 km^2) constrained by P‐3B aircraft measurements, (ii) the consideration of aerosol optical thickness impacts on radiance at NO_2 absorption line, and (iii) high‐resolution surface albedo constrained by ground‐based spectrometers. We characterize errors in the GCAS NO_2 columns by comparing them to Pandora measurements and find a striking correlation (r > 0.74) with an uncertainty of 3.5 × 10^(15) molecules cm^(−2). On 9 of 10 total days, the constrained anthropogenic emissions by a Kalman filter yield an overall 2–50% reduction in polluted areas, partly counterbalancing the well‐documented positive bias of the model. The inversion, however, boosts emissions by 94% in the same areas on a day when an unprecedented local emissions event potentially occurred, significantly mitigating the bias of the model. The capability of GCAS at detecting such an event ensures the significance of forthcoming geostationary satellites for timely estimates of top‐down emissions

    Development and Performance of a Filter Radiometer Monitor System for Integrating Sphere Sources

    Get PDF
    The NASA Goddard Space Flight Center (GSFC) Radiometric Calibration Laboratory (RCL) maintains several large integrating sphere sources covering the visible to the shortwave infrared wavelength range. Two critical, functional requirements of an integrating sphere source are short and long-term operational stability and repeatability. Monitoring the source is essential in determining the origin of systemic errors, thus increasing confidence in source performance and quantifying repeatability. If monitor data falls outside the established parameters, this could be an indication that the source requires maintenance or re-calibration against the National Institute of Science and Technology (NIST) irradiance standard. The GSFC RCL has developed a Filter Radiometer Monitoring System (FRMS) to continuously monitor the performance of its integrating sphere calibration sources in the 400 to 2400nm region. Sphere output change mechanisms include lamp aging, coating (e.g. BaSO4) deterioration, and ambient water vapor level. The Filter Radiometer Monitor System (FRMS) wavelength bands are selected to quantify changes caused by these mechanisms. The FRMS design and operation are presented, as well as data from monitoring four of the RCL s integrating sphere sources

    First Top-Down Estimates of Anthropogenic NO_x Emissions Using High-Resolution Airborne Remote Sensing Observations

    Get PDF
    A number of satellite‐based instruments have become an essential part of monitoring emissions. Despite sound theoretical inversion techniques, the insufficient samples and the footprint size of current observations have introduced an obstacle to narrow the inversion window for regional models. These key limitations can be partially resolved by a set of modest high‐quality measurements from airborne remote sensing. This study illustrates the feasibility of nitrogen dioxide (NO_2) columns from the Geostationary Coastal and Air Pollution Events Airborne Simulator (GCAS) to constrain anthropogenic NO_x emissions in the Houston‐Galveston‐Brazoria area. We convert slant column densities to vertical columns using a radiative transfer model with (i) NO_2 profiles from a high‐resolution regional model (1 × 1 km^2) constrained by P‐3B aircraft measurements, (ii) the consideration of aerosol optical thickness impacts on radiance at NO_2 absorption line, and (iii) high‐resolution surface albedo constrained by ground‐based spectrometers. We characterize errors in the GCAS NO_2 columns by comparing them to Pandora measurements and find a striking correlation (r > 0.74) with an uncertainty of 3.5 × 10^(15) molecules cm^(−2). On 9 of 10 total days, the constrained anthropogenic emissions by a Kalman filter yield an overall 2–50% reduction in polluted areas, partly counterbalancing the well‐documented positive bias of the model. The inversion, however, boosts emissions by 94% in the same areas on a day when an unprecedented local emissions event potentially occurred, significantly mitigating the bias of the model. The capability of GCAS at detecting such an event ensures the significance of forthcoming geostationary satellites for timely estimates of top‐down emissions

    Combinations of single-top-quark production cross-section measurements and vertical bar f(LV)V(tb)vertical bar determinations at root s=7 and 8 TeV with the ATLAS and CMS experiments

    Get PDF
    This paper presents the combinations of single-top-quark production cross-section measurements by the ATLAS and CMS Collaborations, using data from LHC proton-proton collisions at = 7 and 8 TeV corresponding to integrated luminosities of 1.17 to 5.1 fb(-1) at = 7 TeV and 12.2 to 20.3 fb(-1) at = 8 TeV. These combinations are performed per centre-of-mass energy and for each production mode: t-channel, tW, and s-channel. The combined t-channel cross-sections are 67.5 +/- 5.7 pb and 87.7 +/- 5.8 pb at = 7 and 8 TeV respectively. The combined tW cross-sections are 16.3 +/- 4.1 pb and 23.1 +/- 3.6 pb at = 7 and 8 TeV respectively. For the s-channel cross-section, the combination yields 4.9 +/- 1.4 pb at = 8 TeV. The square of the magnitude of the CKM matrix element V-tb multiplied by a form factor f(LV) is determined for each production mode and centre-of-mass energy, using the ratio of the measured cross-section to its theoretical prediction. It is assumed that the top-quark-related CKM matrix elements obey the relation |V-td|, |V-ts| << |V-tb|. All the |f(LV)V(tb)|(2) determinations, extracted from individual ratios at = 7 and 8 TeV, are combined, resulting in |f(LV)V(tb)| = 1.02 +/- 0.04 (meas.) +/- 0.02 (theo.). All combined measurements are consistent with their corresponding Standard Model predictions.Peer reviewe

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF
    corecore