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Abstract. The NASA Goddard Space Flight Center (GSFC) Radiometric Calibration Laboratory 

(RCL) maintains several large integrating sphere sources covering the visible to the shortwave 

infrared wavelength range.  Two critical, functional requirements of an integrating sphere source are 

short and long-term operational stability and repeatability.   Monitoring the source is essential in 

determining the origin of systemic errors, thus increasing confidence in source performance and 

quantifying repeatability.   If monitor data falls outside the established parameters, this could be an 

indication that the source requires maintenance or re-calibration against the National Institute of 

Science and Technology (NIST) irradiance standard.  The GSFC RCL has developed a Filter 

Radiometer Monitoring System (FRMS) to continuously monitor the performance of its integrating 

sphere calibration sources in the 400 to 2400nm region. Sphere output change mechanisms include 

lamp aging, coating (e.g. BaSO4) deterioration, and ambient water vapor level. The FRMS 

wavelength bands are selected to quantify changes caused by these mechanisms. The FRMS design 

and operation are presented, as well as data from monitoring four of the RCL’s integrating sphere 

sources. 
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1 Introduction 

     Two critical requirements of any optical calibration source are short and long-term operational 

stability and repeatability. Without continuous monitoring of the source, short-term source 

instabilities may not be noticed and could possibly be incorrectly attributed to instabilities or 

transients in the instrument being calibrated. Also, long-term source instabilities may never be 

detected until the source output diverges grossly, making repeatability difficult to establish.  

 The degradation of sphere radiant output is wavelength dependent.  Commercial sphere source 

output monitoring devices usually consist of a single silicon detector sometimes equipped with a 

broadband photopic filter mounted at a port on the sphere.  As a result of the broadband wavelength 

response of the silicon detector, only gross sphere output degradation or variability is detected.  

These monitoring devices are insufficient to detect the wavelength selective degradation that would 

affect the individual narrow band wavelengths of radiometers being calibrated by the source.  

Examples of the importance of monitoring short and long term stability and repeatability can be 

found in the historical applications of integrating spheres in the calibration of satellite Earth remote 

sensing instruments1-5.  For many of these applications, the calibration of the integrating sphere is 

performed well before being used in the calibration of the satellite instrument.  It is erroneous to 

assume that the integrating sphere output is unchanged between the times of its calibration and its 

use.  For these cases, in order to realize radiance calibration uncertainties of 3 to 5% (k=1) typical of 

NASA’s Earth Observing System (EOS) satellite instruments operating from 400nm to 2500nm, the 

output of integrating sphere sources must be continuously monitored using stable radiometers 

operating at or across the satellite instrument wavelengths. 

  The GSFC RCL maintains and operates a suite of integrating sphere sources capable of meeting 

the radiance and irradiance calibration requirements of satellite instruments viewing dark ocean to 

bright clouds.  The integrity of the GSFC RCL integrating sphere sources is maintained with NIST 

traceable calibrations.  Sphere source output radiance is slightly variable and unstable as a function 

of the type and condition of the internal reflectance surface, the aging characteristics of the internal 

lamps, and sphere ambient relative humidity and temperature.  As a result, there exists a need to 

continuously monitor the stability of the sphere source output over their wavelength operating range 

of 400 to 2400 nm.  The production of high quality, accurate sphere source data requires that this 

variability be monitored and, if necessary, used to apply a correction factor to the data. The GSFC 



RCL FRMS6, whose development and performance are now fully described in this paper, is an 

optically simple yet versatile eleven band filter radiometer used in the RCL to monitor sphere 

stability and repeatability.  In combination with additional instrumentation, the FRMS is also shown 

to be able to measure sphere uniformity and to characterize the polarization properties of sources and 

optics.    

 

2 FRMS Description 

     A dedicated, optically simplistic, electronically stable detector and optical filter monitoring 

system best serves the need to document the degradation and variability of the sphere output.  The 

GSFC integrating sphere source FRMS is such a system and provides time line data of the sphere 

output stability and variability. A greater confidence in the integrity of the sphere output will thereby 

be maintained through use of the FRMS.  The FRMS is a filter wheel radiometer and is a computer 

controlled, software operated unit.  A block diagram of the FRMS is shown in Fig. 1.  The optical 

input of the FRMS is a Gershen tube with apertures to define the field of view (FOV).  The FOV is 

defined by the incident light (i.e. dashed lines) shown in Fig. 1.  Two critical requirements of the 

FRMS are short and long-term operational stability and repeatability. The FRMS sphere source data 

is an asset in determining the origin of systematic errors, thus increasing confidence in sphere source 

performance and in quantifying source repeatability.  If monitor data falls outside established 

parameters, this is an indication that the source may require maintenance or re-calibration against the 

standard.  Several FRMS optical filter wavelength bands have been selected to be in those areas of 

scientific interest that are sensitive to the mechanisms of common degradation of the sphere output. 

     The heat from the lamps of sphere sources naturally causes the sphere to be elevated in 

temperature to the extent that this is detrimental to the performance and stability of the FRMS 

detector, optical assembly, and electronics. Therefore, directly mounting the FRMS to a small 

aperture on the sphere source is impractical at this time.  The FRMS must be thermally isolated from 

the sphere.  Thermal isolation from the sphere can be realized by placing a fiber optic bundle or a 

light pipe between the sphere and the FRMS entrance aperture.  These methods are currently under 

investigation.  In lieu of this, data has been gathered with the FRMS placed on a table, viewing the 

main aperture of the sphere at a distance of 50 cm.  The FRMS has been tested and characterized and 



the results are presented.  Fig. 2 shows the FRMS monitoring an integrating sphere in this 

configuration. 

 

3 Detector Heads 

     An ultraviolet (UV) enhanced silicon (Si) detector is used for the FRMS in the wavelength range 

of 400 to 1100nm. A second FRMS employs an extended-InGaAs detector and is used for the 

wavelength range of 1100 to 2400nm.  Also, two additional detectors are available for use with the 

FRMS: a two-element “sandwich” detector composed of a Si element and an InGaAs element to 

cover the spectral range of 320 to 2570nm and a Ge detector for the spectral range of 800 to 

1800nm. 

     The two-element detector is a hybrid sandwich-style detector containing an infrared-transmitting 

Si photodiode mounted over an InGaAs PIN photodiode configured along the same optical axis.  The 

benefits of using the two-element detector are the wide spectral response range and the single optical 

axis configuration for both detectors.  The drawbacks are lower sensitivities and a smaller active area 

for the InGaAs detector, making it an undesirable choice for the applications with a chopper.  Table 

1 is a data sheet for these detectors.  A transimpedance amplifier (i.e. current-to-voltage converter) is 

used for the pre-amp.  The selection of the operational amplifier (OA) is based on low noise, low 

drift, low bias (i.e. voltage and current), low input capacitance, high gain, and high resistance.  To 

reduce the noise, “the simpler is better” principle is applied for the pre-amp: the detector is set as 

close as possible to the input of the pre-amp; and there is no selection switch (e.g. sensitivity 

selection, bias cancellation, detector type selection).  The pre-amp contains an OA, a precision 

resistor, and a tiny-value capacitor for frequency compensation.  Each detector has a dedicated pre-

amp with different resistor and capacitor.  The voltage signal from the OA is directly sent to a 

Digital Multi-Meter (DMM) HP 3458A without any modification.  A second-stage amplifier can be 

used, but it is not necessary in this application.  The detector and the pre-amp are mounted in a metal 

cylinder-shaped container as shown in Fig. 3. 

 

4 Filters and Filter Wheel 

     One opaque blocking element and 11 band-pass filters of 2.54cm diameter were installed for the 

FRMS initial testing and characterization.  The filter center wavelengths/bandwidths in nm are as 



follows: 410/10, 440/10, 460/10, 640/10, 840/10, 1050/15, 1240/20, 1380/20, 1640/20, 2130/30, and 

2210/25.  All filters are stock items.  Filter selection is critical and the initial filter bands were 

selected to measure and bracket spectral scientific regions of interest.  The 840nm and 1050nm 

bands are used to monitor the source output spectral peaks; the 1240nm, 1380nm and, 1640nm bands 

bracket the first significant water absorption band; while 2130nm and 2210nm bands are used to 

monitor the infra-red spectral characteristics of the sources.  Past experience in operating quartz 

tungsten halogen lamps of the type used as RCL sources suggests that lamp degradation is most 

noticeable in the UV region and this drove selection of the 410nm, 440nm and 460nm bands to 

monitor lamp degradation.  Also the 410nm and 440nm bands are widely used by other standard 

transfer radiometers, such as the SeaWiFS Transfer Radiometer (SXR) and the Visible Transfer 

Radiometer (VXR) and as MODIS bands.  Note that the initial filters are exchangeable with other 

band-pass filters according to applications.  Fig. 4 shows the twelve position rotating filter wheel. 

 

5 FRMS Electronic Noise Level and Stability 

     The FRMS electronic noise includes the dark noise from the detector photodiode and the 

operational amplifier noise and offset7.  To measure this noise, the opaque blocking element is used 

to cover the detector’s input window; and the output from the operational amplifier (i.e. the dark 

signal) was recorded.  The stability of the dark signal is a direct indication of the stability of the 

detector head, that is, the combination of the detector and pre-amp. 

     The dark signal was measured along with other filters’ signals and was used as the reference 

signal subtracted from the optical filter signals.  Fig. 5 shows a typical dark signal plot.  The two-

element detector, the K3413-09 thermo-electrically cooled Si + InGaAs detector was used to acquire 

these data using the RCL large integrating sphere called “Hardy”.  Details on this and other 

integrating spheres used in this study are provided in the next section of this paper.  In this 

measurement of dark signal, the sphere was turned on with all 16 lamps, then dropped to the 12 lamp 

level, and finally was turned off.  During this period, the ambient temperature increased from 75° F 

to 98° F; but the dark signals remained stable. 

 

6 Sphere Response Stability Measurements 



     Four integrating sphere sources were used to evaluate and characterize the FRMS.  They are 

listed below: 

     •  GSFC 1.83m diameter integrating sphere, dubbed “Hardy,” with a barium sulfate (BaSO4) 

interior coating and a 25.4cm diameter exit aperture.  This sphere is equipped with 16 baffled 200W 

quartz tungsten halogen lamps. 

     •  GSFC 91.4cm diameter polytetrafluoroethylene (PTFE) integrating sphere, dubbed “Slick,” 

lined with Spectralon™ and a 25.4cm diameter exit aperture.  This sphere is equipped with 16 

unbaffled 45W quartz tungsten halogen lamps. 

     •  GSFC 50.8cm diameter PTFE integrating sphere, dubbed “Venti,” lined with Zenith™ coating 

and a 20.3 cm diameter exit aperture.  This sphere is equipped with 4 quartz tungsten halogen lamps: 

two 150W, one 300W and one 75W with an attenuator. 

     •  GSFC 101.6cm diameter PTFE integrating sphere, dubbed “Grande,” lined with Zenith™ 

coating and a 25.4cm diameter exit aperture.  This sphere is equipped with 8 baffled 300W quartz 

tungsten halogen lamps and one 150W quartz tungsten halogen lamp with a variable attenuator. 

     •  NASA Ames Research Center (ARC) 15.2cm diameter radiance standard OL-455 with a 

BaSO4 interior coating and a 3.8cm diameter exit aperture dubbed “ARS455”.  This sphere is 

equipped with a single 150W quartz tungsten halogen lamp. 

     Other instruments used to characterize the FRMS include:  

     •  The Shuttle Solar Backscatter Ultraviolet (SSBUV) instrument:  The SSBUV is a refurbished 

Solar Backscatter Ultraviolet/2 (SBUV/2) instrument of the type flown on the NOAA Polar Orbiting 

Environmental Satellites (POES). This instrument was flown eight times on the Space Shuttle 

between 1989 and 1996.  The instrument is a scanning double Ebert-Fastie holographic spectrometer 

with 1.1 nm band-pass operating from 240 to 405nm. 

     •  An Avantes Spectrometer, AvaSpec-2048-USB2 with UA-300 lines/mm grating, 50µm slit, 

2048 pixel CCD detector, 16 bit ADC, a spectral range of 200 to 1100nm, and a spectral resolution 

of 2.4nm. 

     •  Two Analytical Spectral Devices (ASD) FieldSpec3 Full Range spectrometers with spectral 

ranges of 350-2500nm. 

 

6.1 Short-term stability measurements 



     Three of the GSFC integrating spheres were monitored by the FRMS and the results are plotted in 

Fig. 6 to 8. 

     In Fig. 6, the two upper plots, a and b, were from measurements taken on 10/16/2008.  At the 

same time, an ASD was used to make a comparison with the FRMS and the results are shown in Fig. 

6c.  The results show reasonable agreement with each other.  Figure 6d shows the results from the 

FRMS equipped with an extended InGaAs detector on another day. 

     In Fig. 7 (i.e. Slick), the two upper plots, a and b, show two measurements from the FRMS Si and 

Ge detectors.  At the same time, the Avantes Spectrometer was used to cross calibrate the FRMS and 

its results are plotted as Figure 7c.  The cross calibration also shows consistency between the FRMS 

and the Avantes Spectrometer.   Figure 7d shows the results from the FRMS equipped with an 

extended InGaAs detector on another day. 

     In Fig. 8 (i.e. Venti), the plots show the stability measurement results from the FRMS equipped 

with Si and Ge detectors.   

 Table 2 shows the calculated noise equivalent radiance (NER) using the Slick integrating sphere with all 

lamps illuminated.  The measurement uncertainty and the related NER associated with the FRMS is 

determined by observing the signal level and the maximum amplitude of the dark signal for each channel. 

The signal level is related to radiance level.  The maximum amplitude of the dark signal can be obtained by 

observing the dark signal plots as shown in Figure 5.  The maximum amplitude of the dark signals 

associated with the Si, Ge and extended InGaAs detectors are 4uV, 40uV and 6uV respectively.  The FRMS 

uncertainty can be calculated as: maximum amplitude/signal level.  The NER can be obtained by 

multiplying the uncertainty by the radiance level. 

 

6.2 Measurement comparison with SSBUV 

     On February 7, 2008, a measurement comparison between the FRMS and the SSBUV was 

performed at the GSFC Code 613.3 Radiometric Calibration and Development Laboratory.  The 

ARS455 sphere from NASA AMES was used as the radiance standard.  Since there was no 

overlapping spectral range between these two instruments, two filters, 360/10 and 380/10, were 

selected to replace two of the initial optical band-pass filters in the FRMS.  The data at 360nm and 

380nm were compared between the FRMS and the SSBUV; and results were plotted in Fig. 9. 

 



6.3 Long-term stability measurements 

     One of the capabilities of the FRMS is to monitor a sphere’s long-term stability.  Since the FRMS 

design and operational mode have not been completely finalized, a long-term database has not been 

acquired to validate this function.  Once the FRMS is finalized, data will be acquired every month or 

after every 100 hours of usage and the results will be plotted to show the trends.  These data will 

provide insight into the degradation and variation of sphere lamps and interior coatings.  Sphere data 

acquired over several days with identical warm-up times are shown in Fig. 10.  The data taken on 

October 17, 2009 are used as the reference; data taken after that date are compared to that reference.  

The determination of long-term stability requires long data accumulation times.  Therefore, these 

plots are provided here for demonstration only. 

     Further examination of the day-to-day data in Fig. 10 revealed a significant change in radiance of 

0.5% to 1%.  We have attributed the cause of this additional uncertainty to be the relative instability 

of the lamp power supplies.  Vendor data indicates power supply current accuracy to better than 

12mA (i.e. 0.17% in current).   Our laboratory measurements indicate that a change of 1.5mA in 

power supply current (i.e. 0.025%) will cause a change of 0.1% in sphere output radiance at a 

wavelength of 1000nm. 

 

7 Other Applications 

     Since the FRMS has very low noise level and credible stability, in addition to its initial usage, it 

also can be used in other applications. 

 

7.1 Source Aperture Mapper (SAM) 

     The radiance uniformity of the source output is a critical characteristic for calibration, especially 

when the instrument is sensitive to radiance with a small field of view (FOV).  The FRMS equipped 

with a small FOV aperture can be used to map the uniformity of the source output.  An X-Y 

translation stage was refurbished and used to raster scan across a two-dimensional plane parallel to 

the aperture plane. The FRMS is mounted on the platform of the translation stage shown in Fig. 11.  

The scanning resolution is determined by the FOV of the FRMS and distance from the source output 

aperture to the detector in the FRMS.  Since the distance is predetermined (i.e. 50 cm), the FOV of 



the FRMS solely controls the scanning resolution.  A FOV of 1.91° is used to achieve the 1x1 cm 

scanning resolution.   

     In order to make more accurate measurements, a reference scanning method was used shown in 

Fig. 12.  Using the center of the output aperture as the reference point R, the scanning sequence is 

Column1 → R → Column2 → R → Column3 → R and so forth. The measurement values at the 

reference point R were linearly interpolated and assigned to other scanning points as references.  In 

this way, the relative uniformity at each scanning point was calculated against the reference point, R.   

     Fig. 13 shows the uniformity plots of the four GSFC integrating spheres.  Note that the “Venti” 

sphere has a non-symmetric lamp positioning around its exit aperture, and its output aperture size is 

relatively large compare to its body size. The Venti sphere uniformity shows a stratified pattern from 

the 9 o’clock position, where the 300W lamp is located, to the 3 o’clock position, where the 75W 

lamp is located. 

 

7.2 Polarization Sensitivity Measurement  

     In support of the characterization of the NPOESS Preparatory Project (NPP) program’s Visible Infrared 

Imager Radiometer Suite (VIIRS), preliminary polarization measurements on a flat sheet polarizer were 

performed using the FRMS. The measurement system set up is shown in Figure 14.  The components shown 

in Fig. 14 are as follows from left to right:  the 30.5cm diameter sphere source, the polarizer rotating stage, a 

fused silica optical flat and the FRMS.  The integrating sphere is used as a stable light source.  The polarizer 

sheet under test is mounted on the rotating stage. 

    An initial baseline measurement was performed without the polarizer sheet and the optical flat. Then the 

polarizer was attached to the rotating stage, and the polarization component from the sphere source was 

measured while the polarizer was rotated.  The results of this measurement indicated that the sphere source 

light was linearly polarized at the 0.01% to 0.001% level with the largest percentage of polarization at the 

shortest, 360nm, wavelength.  Finally, the optical flat was inserted and tilted 30° to the incident light.   The 

resulting light intensity variations are shown in Fig. 15.  The difference between these measurement data 

and the theoretical Fresnel prediction was less than 0.2% from 410 to 870 nm as shown in Table 3.  For this 

calculation, the effect of multiple reflections within the optical flat was removed.   

8 Modifications for System Stability 



     The FRMS performs satisfactorily with Si, Ge, and standard InGaAs detectors.  However, the TE 

cooled extended-InGaAs detector has a dark signal instability related to the environmental 

temperature change.  Fig.16 shows the instability of the dark signal from the two-stage TE cooled 

extended-InGaAs detector.  A reduction in the instability of the dark signal has been effected by 

enlarging the FOV to 6.4°, thereby introducing more signal.  To eliminate the environmentally 

induced slow changes, including the temperature instability, the FRMS was modified from DC mode 

to AC mode using a chopper and lock-in amplifier.  A chopper was added in front of the filters in the 

filter wheel assembly shown in Fig. 17.  In this configuration, the output signal is directly sent to a 

lock-in amplifier for data acquisition and recording.  After the modification was complete, several 

measurements were made with an extended-InGaAs detector to compare the FRMS results in DC 

mode and AC mode.  These are shown in Fig. 18. 

     Figure 18 contains 4 plots from two different lamp levels; the two plots in the upper row are from 

full-lamp level measurements, and the two plots in the lower row are from a lower lamp level.  In 

these measurements, the same extended InGaAs detectors and FOV were used to provide a viable 

comparison.  The plots show consistency in the stability trend, but they also show some differences.  

All the DC mode signals tend to ramp up at the beginning and drop off at the end, as compared to the 

AC mode.  This can be explained as follows. When the sphere Grande was illuminated producing 

more than 2,000 Watts of additive lamp power, the room temperature gradually increased and 

eventually caused the dark signal of the extended InGaAs detector to increase, as shown in Fig. 16.  

Since the measurement results under DC mode require subtraction of the dark signal, it produced DC 

signals that show a higher beginning and lower end.  In addition, a vertical comparison of the plots 

with same wavelengths under different lamp levels indicates that, at stronger light level, the AC 

mode does not provide much advantage in the signal-to-noise performance.  However, after reducing 

the light level, the DC mode signal gets noisier than the AC mode on the same scale.  We have 

concluded that, under low light levels, a larger active-area detector working in AC mode will 

provide better signal-to-noise performance than the DC mode. 

 

9 Conclusions 

     In the absence of a source monitor, the short and long-term variability of integrating sphere 

output cannot be quantified. Without this knowledge, the sphere cannot be used as a viable 



calibration transfer device, since its stability and repeatability is questionable. The use of a viable 

multi-spectral source monitor is therefore required for all integrating sphere sources used as 

calibration standards. The FRMS instrument, as a multi-band filter radiometer operating in DC 

mode, is capable of monitoring changes in the output of integrating sphere sources at the 0.008 to 

0.013% level over the 410 to 2130 nm wavelength range, excluding the 1380 nm channel which is 

influenced by fluctuations in water vapor.  FRMS data are being acquired while viewing the RCL 

integrating sphere sources over a period of several months in an effort to isolate and identify any 

long-term source degradation characteristics.  In addition to its use as a source monitor, use of the 

FRMS as source spatial uniformity mapper in the visible through shortwave infrared has been 

demonstrated.  The spatial uniformity of a calibration source factors directly into absolute errors in 

the calibration of moderate resolution and hyperspectral imaging instruments.  Lastly, use of the 

FRMS as a polarization insensitive detector system in the visible through shortwave infrared has also 

been demonstrated.  The FRMS have been used not only to completely characterize the polarization 

of RCL source outputs but also to characterize the transmittance of flat plate polarizers. 
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Figure Captions 

Fig. 1 A block diagram of the FRMS. 

Fig. 2 The FRMS monitoring an integrating sphere source. 

Fig. 3 The FRMS detector head. 

Fig. 4 The FRMS optical filter wheel. 

Fig. 5 FRMS dark signals for the thermo-electrically cooled silicon + InGaAs detector. 

Fig. 6 Measurements of the short-term stability of the RCL “Hardy” sphere: (a) FRMS with Si 

detector, 410 to 1050nm; (b) FRMS with InGaAs detector, 940 to 1640nm; (c) ASD FieldSpec3 

Radiometer, 410-1640nm; (d) FRMS with extended InGaAs detector, 1050-2130nm. 

Fig. 7 Measurements of the short-term stability of the RCL “Slick” sphere: (a) FRMS with Si 

detector, 410 to 1050nm; (b) FRMS with Ge detector, 640 to 1870nm; (c) Avantes Spectrometer, 

400 to 1050 nm; (d) FRMS with extended InGaAs detector, 1050-2130nm. 

Fig. 8 Measurements of the short-term stability of the RCL “Venti” sphere: (a) FRMS with Si 

detector, 400 to 1050nm; (b) FRMS with Ge detector, 640 to 1870nm. 

Fig. 9 FRMS and SSBUV stability measurement comparison on the NASA Ames “ARS455” sphere: 

(a) 360nm; (b) 380nm. 

Fig. 10 Measurements of long-term stability of the RCL “Hardy” sphere: (a) FRMS data on 4 days, 

410 to 1640 nm; (b) FRMS data on 4 days normalized to 10/17/08. 

Fig. 11 The RCL Source Aperture Mapper (SAM) with FRMS as detector. 

Fig. 12 The RCL SAM scanning technique. 

Fig. 13 FRMS SAM sphere uniformity data at 640nm: (a) “Hardy” sphere; (b) “Slick” sphere; (c) 

“Venti” sphere; (d) “Grande” sphere. The graduations on the x and y axes indicate centimeters. 

Fig. 14 Polarization measurement setup showing, from left to right, an integrating sphere, the flat 

sheet polarizer in a rotation stage, the glass optical flat tilted 30⁰ to the primary optical axis of the 

setup, and the FRMS. 

Fig. 15 FRMS signal in volts as a function of the polarization angle of the flat sheet polarizer.  For 

these data, the FRMS viewed an integrating sphere through the sheet polarizer and a glass optical 

flat tilted 30⁰ to the primary optical axis. 

Fig. 16 Instability of the dark signal of the FRMS equipped with the thermo-electrically cooled 

InGaAs detector. 



Fig. 17 Chopper installed before the filter wheel in the FRMS to enable AC measurements using a 

lock-in amplifier. 

Fig. 18 Comparison of FRMS measurements made in DC and AC operating modes using the RCL 

“Grande” sphere as a source: (a) FRMS with extended InGaAs detector viewing the sphere with 8-

300W and 1-150W lamp illuminated (i.e. full lamp level); (b) FRMS with extended InGaAs detector 

viewing the sphere with 4-300W lamps illuminated (i.e. lower lamp level). 

  



Table 1. Detectors used in the FRMS 
 

Detector Element Cooling Active 
Area 
Size 

(mm) 

Spectral 
Response 

Range 
(nm) 

Sensitivity 
@λP 

(A/W) 

Dark 
Current 

 

Shunt 
Resistance 

Rsh 

NEP 
@ λP 

(W/Hz 
1/2

) 

Si One-stage 
TE-cooled 

(-10 ºC) 
 

2.4x2.4 190 – 1100 0.5 10 pAa 1 GΩa 8.1x10-15 b 

Extended-InGaAs Two-stage 
TE-cooled 

(-20 ºC) 

Ø3 1200 – 
2570 

1.3 7.5 μAc 6 KΩa 1.8x10-12 b 

Two-
element 
Detector 

Si One-stage 
TE-cooled 

(-10 ºC) 
 

2.4x2.4 320 –1670 0.45 50 pAa 200 MΩa  

InGaAs One-stage 
TE-cooled 

(-10 ºC) 
 

Ø1 0.55 70 pA*3 1.5 GΩa  

Extended 
Two-

element 
Detector 

Si One-stage 
TE-cooled 

(-10 ºC) 
 

2.4x2.4 320 – 2570 0.45 50 pAa 200 MΩa  

InGaAs One-stage 
TE-cooled 

(-10 ºC) 
 

Ø1 0.60 1.5 μAc 30 KΩa  

Ge Two-stage 
TE-cooled 

(-20 ºC) 

Ø5 800 – 1800 0.8 30 nAa 330 KΩa 3.0x10-13 b 

a 25° C, VR=10 mV 
b 25° C, VR=0V 
c 25° C, VR=1V 
 

Table 2. FRMS noise equivalent radiance, in x10-2W/m2 sr μm, for select detectors and bands 
between 410 and 2130 nm with the FRMS operated in DC mode. 
 

Wavelength (nm) 410 440 460 640 840 1050 1240 1380 1640 1870 2130 
Si detector 0.45 0.82 0.94 0.99 0.83 0.57      
Ge detector      5.79 3.46 2.33 2.22 1.82   

InGaAs detector      11.5 4.74 3.81 1.27 4.67 2.95 
 

Table 3. Percent difference between polarization measurements using a 30⁰ tilted glass plate, a flat 
plate polarizer, and the FRMS and the theoretical Fresnel prediction 
 

Wavelength (nm) 360 380 410 440 460 550 640 780 840 870 1050 
Difference (%) 0.234 0.207 0.171 0.150 0.128 0.124 0.014 0.137 0.085 0.092 0.362 
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