98 research outputs found

    Renal cortical drug and xenobiotic metabolism following urinary tract obstruction

    Get PDF
    Renal cortical drug and xenobiotic metabolism following urinary tract obstruction. Renal cortical metabolism of drugs and xenobiotics was assessed with microsomes prepared from normal, contralateral and 4-day postobstructive hydronephrotic kidneys. Microsomal mixed-function oxidase and prostaglandin H synthase systems were determined in control and 3-methylcholanthrene-treated rabbits. Cytochrome P450 content and biphenyl-4-hydroxylase activity but not cytochromec reductase activity were reduced in the hydronephrotic kidney. 3-Methylcholanthrene treatment increased cytochrome P450 content and biphenyl-4-hydroxylase and acetanilide-4-hydroxylase activities in normal, contralateral, and hydronephrotic kidneys. However, even after 3-methylcholanthrene treatment, hydronephrotic kidney cytochrome P450 content and acetanilide-4-hydroxylase activity were not more than 20% of the corresponding normal kidney values. Prostaglandin H synthase metabolism of benzidine was observed in the hydronephrotic kidney but was at the limit of detection in normal or contralateral kidneys with or without 3-methylcholanthrene treatment. Characteristics of benzidine metabolism were consistent with the hydroperoxidase rather than the fatty acid cyclooxygenase activity of prostaglandin H synthase. Therefore, hydronephrosis alters the drug and xenobiotic metabolic profile of the renal cortex from a primarily mixed-function oxidase-dependent system to one with the potential for metabolism by the hydroperoxidase component of prostaglandin H synthase.Métabolisme cortical rénal des médicaments et xénobiotiques après obstruction du tractus urinaire. Le métabolisme cortical rénal de médicaments et de xénobiotiques a été étudié avec des microsomes préparés à partir des reins normaux, controlatérals, et hydronéphrotiques, 4 jours après une obstruction. Les systèmes microsomiaux de fonction oxydase mixte et de prostaglandine H synthétase ont été déterminés chez des lapins contrôles et traités par du 3-méthylcholanthrène. Le contenu en cytochrome P450 et l'activité biphényl-4-hydroxylase, mais non l'activité cytochromec réductase étaient diminués dans le rein hydronéphrotique. Le traitement par le 3-méthylcholanthrène a augmenté le contenu en cytochrome P450 et les activités biphényl-4-hydroxylase et acétanilide-4-hydroxylase chez les reins normaux, controlatérals et hydronéphrotiques. Cependant, même après traitement par le 3-méthylcholanthrène, le contenu en cytochrome P450 du rein hydronéphrotique et son activité acétanilide-4-hydroxylase n'étaient pas de plus de 20% des valeurs dans le rein normaux correspondant. Le métabolisme de la benzidine par la prostaglandine H synthétase était observable dans le rein hydronéphrotique, mais était à la limite de la détection dans les reins normaux ou controlatérals, avec ou sans traitement par le 3-méthylcholanthrène. Les caractéristiques du métabolisme de la benzidine étaient plus compatibles avec l'activité hydroperoxidase qu'avec l'activité cyclooxygénase des acides gras de la prostaglandine H synthétase. Ainsi, l'hydronéphrose altère le profil métabolique des drogues et des xénobiotiques dans le cortex rénal d'un système primitivement dépendant d'une fonction oxydase mixte à un système ayant la capacité de métabolisme par le constituant hydroperoxydase de la prostaglandine H synthétase

    From L-Dopa to Dihydroxyphenylacetaldehyde: A Toxic Biochemical Pathway Plays a Vital Physiological Function in Insects

    Get PDF
    One protein in Aedes aegypti, classified into the aromatic amino acid decarboxylase (AAAD) family based on extremely high sequence homology (∼70%) with dopa decarboxylase (Ddc), was biochemically investigated. Our data revealed that this predicted AAAD protein use L-dopa as a substrate, as does Ddc, but it catalyzes the production of 3,4-dihydroxylphenylacetaldehyde (DHPAA) directly from L-dopa and apparently has nothing to do with the production of any aromatic amine. The protein is therefore named DHPAA synthase. This subsequently led to the identification of the same enzyme in Drosophila melanogaster, Anopheles gambiae and Culex quinquefasciatus by an initial prediction of putative DHPAA synthase based on sequence homology and subsequent verification of DHPAA synthase identity through protein expression and activity assays. DHPAA is highly toxic because its aldehyde group readily reacts with the primary amino groups of proteins, leading to protein crosslinking and inactivation. It has previously been demonstrated by several research groups that Drosophila DHPAA synthase was expressed in tissues that produce cuticle materials and apparent defects in regions of colorless, flexible cuticular structures have been observed in its gene mutants. The presence of free amino groups in proteins, the high reactivity of DHPAA with the free amino groups, and the genetically ascertained function of the Drosophila DHPAA synthase in the formation of colorless, flexible cuticle, when taken together, suggest that mosquito and Drosophila DHPAA synthases are involved in the formation of flexible cuticle through their reactive DHPAA-mediated protein crosslinking reactions. Our data illustrate how a seemingly highly toxic pathway can serve for an important physiological function in insects

    The Neurotoxicity of DOPAL: Behavioral and Stereological Evidence for Its Role in Parkinson Disease Pathogenesis

    Get PDF
    BACKGROUND: The etiology of Parkinson disease (PD) has yet to be fully elucidated. We examined the consequences of injections of 3,4-dihydroxyphenylacetaldehyde (DOPAL), a toxic metabolite of dopamine, into the substantia nigra of rats on motor behavior and neuronal survival. METHODS/PRINCIPAL FINDINGS: A total of 800 nl/rat of DOPAL (1 µg/200 nl) was injected stereotaxically into the substantia nigra over three sites while control animals received similar injections of phosphate buffered saline. Rotational behavior of these rats was analyzed, optical density of striatal tyrosine hydroxylase was calculated, and unbiased stereological counts of the substantia nigra were made. The rats showed significant rotational asymmetry ipsilateral to the lesion, supporting disruption of dopaminergic nigrostriatal projections. Such disruption was verified since the density of striatal tyrosine hydroxylase decreased significantly (p<0.001) on the side ipsilateral to the DOPAL injections when compared to the non-injected side. Stereological counts of neurons stained for Nissl in pars compacta of the substantia nigra significantly decreased (p<0.001) from control values, while counts of those in pars reticulata were unchanged after DOPAL injections. Counts of neurons immunostained for tyrosine hydroxylase also showed a significant (p=0.032) loss of dopaminergic neurons. In spite of significant loss of dopaminergic neurons, DOPAL injections did not induce significant glial reaction in the substantia nigra. CONCLUSIONS: The present study provides the first in vivo quantification of substantia nigra pars compacta neuronal loss after injection of the endogenous toxin DOPAL. The results demonstrate that injections of DOPAL selectively kills SN DA neurons, suggests loss of striatal DA terminals, spares non-dopaminergic neurons of the pars reticulata, and triggers a behavioral phenotype (rotational asymmetry) consistent with other PD animal models. This study supports the "catecholaldehyde hypothesis" as an important link for the etiology of sporadic PD

    The Biochemical and Cellular Basis for Nutraceutical Strategies to Attenuate Neurodegeneration in Parkinson’s Disease

    Get PDF
    Future therapeutic intervention that could effectively decelerate the rate of degeneration within the substantia nigra pars compacta (SNc) could add years of mobility and reduce morbidity associated with Parkinson’s disease (PD). Neurodegenerative decline associated with PD is distinguished by extensive damage to SNc dopaminergic (DAergic) neurons and decay of the striatal tract. While genetic mutations or environmental toxins can precipitate pathology, progressive degenerative succession involves a gradual decline in DA neurotransmission/synaptic uptake, impaired oxidative glucose consumption, a rise in striatal lactate and chronic inflammation. Nutraceuticals play a fundamental role in energy metabolism and signaling transduction pathways that control neurotransmission and inflammation. However, the use of nutritional supplements to slow the progression of PD has met with considerable challenge and has thus far proven unsuccessful. This review re-examines precipitating factors and insults involved in PD and how nutraceuticals can affect each of these biological targets. Discussed are disease dynamics (Sections 1 and 2) and natural substances, vitamins and minerals that could impact disease processes (Section 3). Topics include nutritional influences on α-synuclein aggregation, ubiquitin proteasome function, mTOR signaling/lysosomal-autophagy, energy failure, faulty catecholamine trafficking, DA oxidation, synthesis of toxic DA-quinones, o-semiquinones, benzothiazolines, hyperhomocyseinemia, methylation, inflammation and irreversible oxidation of neuromelanin. In summary, it is clear that future research will be required to consider the multi-faceted nature of this disease and re-examine how and why the use of nutritional multi-vitamin-mineral and plant-based combinations could be used to slow the progression of PD, if possible

    Catechols in post-mortem brain of patients with Parkinson disease

    No full text
    BACKGROUND: Dihydroxyphenylacetaldehyde (DOPAL), a cytotoxic metabolite of dopamine, is the focus of the ‘catecholaldehyde hypothesis’ about the pathogenesis of Parkinson disease. This study explored whether DOPAL is detectable in human striatum – especially in the putamen (Pu), the main site of dopamine depletion in Parkinson disease – and is related to other neurochemical indices of catecholamine stores and metabolism in Parkinson disease. METHODS: Putamen, caudate (Cd), and frontal cortex (Ctx) catechols were measured in tissue from patients with pathologically proven end-stage Parkinson disease (N = 15) and control subjects (N = 14) of similar age with similar post-mortem intervals. RESULTS: Putamen DOPAL (3% of dopamine in controls) correlated with dopamine and dihydroxyphenylacetic acid both across all subjects and within the Parkinson disease and control groups. Pu dopamine was decreased by 93% and dihydroxyphenylacetic acid 95% in Parkinson disease vs. controls, with smaller decreases of DOPAL (83%) and norepinephrine (73%) in Pu and of dopamine (74%) and dihydroxyphenylacetic acid (82%) in Cd. In Parkinson disease, Pu DOPAL:dihydroxyphenylacetic acid averaged 3.4 times and DOPAL:dopamine 4.4 times control (P = 0.03 each). The main catecholamine in Ctx was norepinephrine, which was decreased by 51% in Parkinson disease patients. CONCLUSIONS: Correlated decreases of DOPAL, dopamine, and dihydroxyphenylacetic acid in Parkinson disease reflect severe loss of Pu dopamine stores, which seems more extensive than loss of Pu norepinephrine or Cd dopamine stores. Increased Pu DOPAL:dihydroxyphenylacetic acid ratios in Parkinson disease suggest decreased detoxification of DOPAL by aldehyde dehydrogenase. Elevated levels of cytosolic DOPAL might contribute to loss of dopaminergic neurons in Parkinson disease
    corecore